Answer:

Step-by-step explanation:
![\displaystyle = \frac{x^2(y-2)}{3y} \\\\Put \ x = 3, \ y = -1\\\\= \frac{(3)^2(-1-2)}{3(-1)}\\\\= \frac{9(-3)}{-3} \\\\= 9 \\\\ \rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%3D%20%5Cfrac%7Bx%5E2%28y-2%29%7D%7B3y%7D%20%5C%5C%5C%5CPut%20%5C%20x%20%3D%203%2C%20%5C%20y%20%3D%20-1%5C%5C%5C%5C%3D%20%5Cfrac%7B%283%29%5E2%28-1-2%29%7D%7B3%28-1%29%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B9%28-3%29%7D%7B-3%7D%20%5C%5C%5C%5C%3D%209%20%5C%5C%5C%5C%20%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3><h3>Peace!</h3>
Answer:
546 ft³
Step-by-step explanation:
In the figure attached, the top view of the pool is shown. It can be decomposed into a trapezoid which height is 12 ft and which bases are 9 ft and 11 ft; and a rectangle which height is 1.5 ft and and it base is 11 ft.
Area of the trapezoid: (9 + 11)/2 * 12 = 120 ft²
Area of the rectangle: 1.5*11 = 16.5 ft²
Total area: 120 + 16.5 = 136.5 ft²
Volume of the pool: Total area * deep = 136.5 * 4 = 546 ft³
Answer:
5
Step-by-step explanation:
Assuming we want to evaluate |z|, given that, z=4+3i.
Then, by definition of modulus,



Therefore the modulus be of the given complex number is 5 units
Log (x) = 3
10^3 = x
x = 1,000