Answer:
P(X ≥ 1) = 0.50
Step-by-step explanation:
Given that:
The word "supercalifragilisticexpialidocious" has 34 letters in which 'i' appears 7 times in the word.
Then; the probability of success = 7/34 = 0.20588
Using Binomial distribution to determine the probability; we have:

where;
x = 0,1,2,...n and 0 < β < 1
and x represents the number of successes.
However; since the letter is drawn thrice; the probability that the letter "i" is drawn at least once can be computed as:
P(X ≥ 1) = 1 - P(X< 1)
P(X ≥ 1) = 1 - P(X =0)
![P(X \ge 1) = 1 - \bigg [ {^3C__0} (0.21)^0 (1-0.21)^{3-0} \bigg]](https://tex.z-dn.net/?f=P%28X%20%5Cge%201%29%20%3D%20%201%20-%20%5Cbigg%20%5B%20%7B%5E3C__0%7D%20%280.21%29%5E0%20%281-0.21%29%5E%7B3-0%7D%20%5Cbigg%5D)
![P(X \ge 1) = 1 - \bigg [ 1 \times 1 (0.79)^{3} \bigg]](https://tex.z-dn.net/?f=P%28X%20%5Cge%201%29%20%3D%20%201%20-%20%5Cbigg%20%5B%201%20%5Ctimes%201%20%280.79%29%5E%7B3%7D%20%5Cbigg%5D)
P(X ≥ 1) = 1 - 0.50
P(X ≥ 1) = 0.50
Hey I would try to use Photomath or Socratic they are both apps that are downloadable
You should simplify it using your Great Common Denominator which is 90
then, you divide each which is
270/90 out of 360/90
which gives u 3/4
and there goes your answer :)
Y=mx +b
So
10-7y=0
-7y=-10+0 Y= -10/-7 Y= 10/7
Your y-int. Is 10/7