1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Feliz [49]
3 years ago
14

Which of the following is the most reactive?

Chemistry
1 answer:
mezya [45]3 years ago
4 0

4. Rubidium

I believe :)

You might be interested in
A beaker with 1.60×102 mL of an acetic acid buffer with a pH of 5.000 is sitting on a benchtop. The total molarity of acid and c
stich3 [128]

Answer:

The pH will change 0.16 ( from 5.00 to 4.84)

Explanation:

Step 1: Data given

volume of acetic acid buffer = 160 mL

The total molarity of acid and conjugate base in this buffer is 0.100 M

A student adds 7.10 mL of a 0.460 M HCl solution to the beaker.

The pKa of acetic acid is 4.740

pH = 5.00

Step 2: Calculate concentration of acid

Consider x = concentration acid

Consider y = concentration conjugate base

x + y = 0.100

5.00 = 4.740 + log y/x

5.00 - 4.740 = log y/x

0.26 = log y/x

10^0.26 =1.82 = y/x

1.82 x = y

Since x+y = 0.100

x + 1.82 x = 0.100

2.82 x = 0.100

x =0.0355 M = concentration acid

Step 3: Calculate concentration of conjugate base

y = 0.100 - x

0.100 - 0.0355 =0.0645 M= concentration conjugate base

Step 4: Calculate moles of acid

Moles = volume * molarity

moles acid = 0.160 L * 0.0355 M= 0.00568  moles

Step 5: Calculate moles of conjugate base

moles conjugate base = 0.0645 M * 0.160 L=0.01032 moles

Step 6: Calculate moles HCl

moles HCl = 7.10 * 10^-3 L * 0.460 M=0.003266 moles

Step 7: Calculate new moles

A- + H+ = HA

moles conjugate base = 0.01032 - 0.003266 =0.007054  moles

moles acid = 0.00568 + 0.003266=0.008946 moles

Step 8: Calculate the total volume

total volume = 160 + 7.10 = 167.1 mL = 0.1671 L

Step 9: Calculate the concentration of the acid

concentration acid = 0.008946/ 0.1671 =0.0535 M

Step 10: Calculate the concentration of conjugate base

concentration conjugate base = 0.007054/ 0.1671 =0.0422 M

Step 11: Calculate the pH

pH = 4.740 + log 0.0535/ 0.0422=4.84

change pH = 5.00 - 4.84=0.16

The pH will change 0.16

5 0
3 years ago
Molar mass c3h8
maksim [4K]

Answer:

1. 44.11 g

2. 36.03 g

3. 8.08 g

4. 81.7%

5. 18.3%

Explanation:

1. 12.01+12.01+12.01+1.01+1.01+1.01+1.01+1.01+1.01+1.01+1.01=44.11

2. 12.01×3= 36.03

3. 1.01×8= 8.08

4.(36.03/44.11)×100= 81.7%

5. (8.08/44.11)×100= 18.3%

8 0
2 years ago
10Al + 6NH4ClO4 → 4Al 2O3 + 2AlCl 3 + 12H2O + 3N2
Zolol [24]
1 Aluminium is oxidised Al - 3e = Al⁺³

2 Chlorine is reduced  Cl⁺⁷ + 8e = Cl⁻¹

3 Nitrogen is oxidised 2N⁻³ - 6e = N₂

4 0
3 years ago
At room temperature iodine is a solid and bromine is a liquid.
vichka [17]

Answer:

<u>Kinetic particle theory</u>

Arrangement and motion of solid particles

-> Solid particles are packed closely with each other in an orderly manner. They vibrate vigorously in their fixed positions.

Arrangement and motion of liquid particles

-> Liquid particles are packed less closely with each other as compared to solid particles in a disorderly manner. They move around in a random motion; sliding past each other.

3 0
3 years ago
Air is compressed from an inlet condition of 100 kPa, 300 K to an exit pressure of 1000 kPa by an internally reversible compress
ElenaW [278]

Answer:

(a) W_{isoentropic}=8.125\frac{kJ}{mol}

(b) W_{polytropic}=7.579\frac{kJ}{mol}

(c) W_{isothermal}=5.743\frac{kJ}{mol}

Explanation:

Hello,

(a) In this case, since entropy remains unchanged, the constant k should be computed for air as an ideal gas by:

\frac{R}{Cp_{air}}=1-\frac{1}{k}  \\\\\frac{8.314}{29.11} =1-\frac{1}{k}\\

0.2856=1-\frac{1}{k}\\\\k=1.4

Next, we compute the final temperature:

T_2=T_1(\frac{p_2}{p_1} )^{1-1/k}=300K(\frac{1000kPa}{100kPa} )^{1-1/1.4}=579.21K

Thus, the work is computed by:

W_{isoentropic}=\frac{kR(T_2-T_1)}{k-1} =\frac{1.4*8.314\frac{J}{mol*K}(579.21K-300K)}{1.4-1}\\\\W_{isoentropic}=8.125\frac{kJ}{mol}

(b) In this case, since n is given, we compute the final temperature as well:

T_2=T_1(\frac{p_2}{p_1} )^{1-1/n}=300K(\frac{1000kPa}{100kPa} )^{1-1/1.3}=510.38K

And the isentropic work:

W_{polytropic}=\frac{nR(T_2-T_1)}{n-1} =\frac{1.3*8.314\frac{J}{mol*K}(510.38-300K)}{1.3-1}\\\\W_{polytropic}=7.579\frac{kJ}{mol}

(c) Finally, for isothermal, final temperature is not required as it could be computed as:

W_{isothermal}=RTln(\frac{p_2}{p_1} )=8.314\frac{J}{mol*K}*300K*ln(\frac{1000kPa}{100kPa} ) \\\\W_{isothermal}=5.743\frac{kJ}{mol}

Regards.

8 0
3 years ago
Other questions:
  • Each of the following values was read on an instrument of measuring device. In each case the last digit was estimated. Tell what
    10·1 answer
  • Given that the frequency of a wave is 9.12x10^-12 Hz, what must be the
    15·1 answer
  • Which electromagnetic radiation on the electromagnetic spectrum can be detected by the human eye?
    7·2 answers
  • What is an atom? I'll give brainliest.
    5·1 answer
  • Water droplets forming on a window on a cool day is an example of evaporation
    12·2 answers
  • The formation constant* of [M(CN) 4 ]2− is 7.70 × 10 16 , where M is a generic metal. A 0.150 mole quantity of M(NO3)2 is added
    13·1 answer
  • Help me cuz it's due in 5 minutes!!!! ​
    9·1 answer
  • What are the two formulas for the ions that's make up AgC2H3O2 bromide?
    11·1 answer
  • Which of the following is NOT a plate motion that will occur at a plate boundary?
    8·2 answers
  • The pH of an acidic solution is 2.47. what is the [H+]
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!