Plants that have nigrogen fixing bacteria in their roots are called
legumes.
Answer:
Polar covalent bond.
Explanation:
When the bond is formed between the atoms by sharing the electrons the bond thus have covalent character. The atom with larger electronegativity attract the electron pair more towards it self and becomes partial negative while the other atom becomes partial positive. When the electronegativity difference is less than 0.4 the bond is non polar covalent.
When bonded atoms have greater electronegativity difference i.e 2 or greater than two the bond is ionic because electron is transfer from low electronegative atom to highest electronegative atom.
For example:
In water the electronegativity of oxygen is 3.44 and hydrogen is 2.2. That's why electron pair attracted more towards oxygen, thus oxygen becomes partial negative and hydrogen becomes partial positive.
In case of H₂, Cl₂, Br₂ the bond has very high covalent character because of zero electronegativity difference.
Answer:
Average atomic mass = 51.9963 amu
Explanation:
Given data:
Abundance of Cr⁵⁰ with atomic mass= 4.34%
, 49.9460 amu
Abundance of Cr⁵² with atomic mass = 83.79%, 51.9405 amu
Abundance of Cr⁵³ with atomic mass =9.50%, 52.9407 amu
Abundance of Cr⁵⁴ with atomic mass = 2.37%, 53.9389 amu
Average atomic mass = 51.9963 amu
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass +....n) / 100
Average atomic mass = (4.34×49.9460)+(83.79×51.9405) +(9.50×52.9407)+ (2.37×53.9389) / 100
Average atomic mass = 216.7656 + 4352.0945 + 502.9367 +127.8352 / 100
Average atomic mass = 5199.632 / 100
Average atomic mass = 51.9963 amu
Answer:
A.
Explanation:
Using the ideal gas equation, we can calculate the number of moles present. I.e
PV = nRT
Since all the parameters are equal for both gases, we can simply deduce that both has the same number of moles of gases.
The relationship between the mass of each sample and the number of moles can be seen in the relation below :
mass in grammes = molar mass in g/mol × number of moles.
Now , we have established that both have the same number of moles. For them to have the same mass, they must have the same molar masses which is not possible.
Hence option A is wrong
Precipitation :)
Hope it helps