Answer:
y=($3/1h)x+$4, it costs $19 to rent the bike for 5 hours.
Explanation:
An equation in slope-intercept form is y=m*x+n. In this case y would be the cost of rent, while x is the time. We need to determine m and n.
At the very beginning, x=0h (h is hours), the cost of rent is the deposit, so we know that $4=m*0h+n=n. Then we know that the cost of rent must increase by $3 with each hour, which means that the slope is m=$3/1h. Another way of getting this value would be to think on a particular case: after 1 hour, the cost of rent should be the deposit plus an hour of rent, or $7, so it should happen that <em>$7</em>=m*<em>1h</em>+$4 (where the $4 we already know is the value of n, and the numbers in italics are the values for the particular case we are looking for), from where we get that m*1h=$3, so m=$3/1h (the same result as before).
Putting all together, we have y=($3/1h)x+$4, and for 5 hours we get y=($3/1h)(5h)+$4
To solve this problem we will use the concepts of the moment of rotational inertia, angular acceleration and the expression of angular velocity.
The rotational inertia is expressed as follows:

Here,
m = Mass of the object
r = Distance from the rotational axis
The rotational acceleration in terms of translational acceleration is

Here,
a = Acceleration
R = Radius of the circular path of the object
The expression for the rotational speed of the object is

Here,
is the angular displacement of the object
The explanation by which when climbing a mountain uphill is changed to a larger pinion, is because it produces a greater torque but it is necessary to make more pedaling to be able to travel the same distance. Basically every turn results in less rotations of the rear wheel. Said energy that was previously used to move the rotation of the wheel is now distributed in more turns of the pedal. Therefore option a and c are correct.
This would indicate that the correct option is D.
At a temperature of 298 K, the Henry's law constant is 0.00130 M/atm for oxygen. The solubility of oxygen in water 1.00 atm would be calculated as follows:
<span>S = (H) (Pgas) = 0.00130 M / atm x 0.21 atm = 0.000273 M
</span>
At 0.890 atm,
<span>S = (H)(Pgas) = 0.00130 M / atm x 0.1869 atm = 0.00024297 M</span>
<span>
If atmospheric pressure would suddenly change from 1.00 atm to 0.890 atm at the same temperature, the amount of oxygen that will be released from 3.30 L of water in an unsealed container would be as follows</span>
<span>
3.30 L x (0.000273 mol / L) = 0.0012012 mol</span>
3.30 L x (0.00024297 mol / L) = 0.001069068 mol
0.0012012 mol - 0.001069068 mol = 0.000132 mol
The scientific method is the process that scientists use to answer question about the world.
Answer:
<em>The mass of the apple is 0.172 kg (172 g)</em>
Explanation:
<u>The Law Of Conservation Of Linear Momentum
</u>
The total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of two bodies, then the total momentum is the sum of both momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'
Or, equivalently:

If both masses stick together after the collision at a common speed v', then:

We are given the mass of an arrow m1=43 g = 0.043 kg traveling at v1=84 m/s to the right (positive direction). It strikes an apple of unknown mass m2 originally at rest (v2=0). The common speed after they collide is v'=16.8 m/s.
We need to solve the last equation for m2:

Factoring m2 and m1:

Solving:

Substituting:



The mass of the apple is 0.172 kg (172 g)