Answer:
Conditioning two or three times will insure that the concentration of titrant is not changed by a stray drop of water.
Explanation:
"Check the tip of the buret for an air bubble. To remove an air bubble, whack the side of the buret tip while solution is flowing".
Answer:
Option b. 0.048 M
Explanation:
We have the molecular weight and the mass, from sulcralfate.
Let's convert the mass in g, to moles
1 g . 1 mol / 2087 g = 4.79×10⁻⁴ moles.
Molarity is mol /L
Let's convert the volume of solution in L
10 mL . 1L/1000 mL = 0.01 L
4.79×10⁻⁴ mol / 0.01 L = 0.048 mol/L
Answer:
for what I can see in the picture the volume is 155
Explanation:
Answer:
37.1 calories.
Approximately, 37.1 = 40 calories.
Explanation:
So, without mincing words let's dive straight into the solution to the question above.
We are given the following parameters which are going to help in solving this particular Question.
The mass of broccoli = 86g of broccoli, mass of carbohydrates present = 6g of carbohydrates, the mass of protein present = 2.6g of protein and the mass of fat present = 0.3g of fat.
Therefore, the nutritional energy content (in Calories) = (6 × 4) + (2.6 × 4) + (0.3 × 9) = 10.4 + 24 + 2.7 = 37.1
Hence, the nutritional energy content (in Calories) = 37.1 calories.
Approximately, 37.1 = 40 calories.
Assuming that the contents of the chamber ar ideal gases. We can use the relation PV=nRT. At a constant
temperature and number of moles of the gas the product of PV is equal to some
constant. At another set of condition of temperature, the constant is still the
same. Calculations are as follows:
P1V1 =P2V2
P2 = (1)(450)/ 48
P2 = 9.375 atm