.hello :
an equation of the circle <span>Center at the w(a,b) and ridus : r is :
(x-a)² +(y-b)² = r²
in this exercice : r = 1
</span><span>The points (-18,15) and (-20,15) lie on a circle with a radius of 1:
</span>(-18-a)²+(15-b)² = 1 ....(1)
(-20-a)² +(15-b)² = 1 ....(2)
solve this system :
(1) -(2) : (-18-a)² - (-20-a)² =0
(-18-a)² =(-20-a)² =0
( -18-a = -20-a) or (-18-a = - (-20-a))
1 ) ( -18-a = -20-a) no solution confused : -18=-20
2 ) -18-a =20+a
-2a =38
a = -19
subst in (1) :(-18+19)²+(15-b)² =1
(15-b)² = 0.... 15-b = 0 .... b = 15
the center is :w(-19,15)
There are two of them.
I don't know a mechanical way to 'solve' for them.
One can be found by trial and error:
x=0 . . . . . 2^0 = 1 . . . . . 4(0) = 0 . . . . . no, that doesn't work
x=1 . . . . . 2^1 = 2 . . . . . 4(1) = 4 . . . . . no, that doesn't work
x=2 . . . . . 2^2 = 4 . . . . . 4(2) = 8 . . . . . no, that doesn't work
x=3 . . . . . 2^3 = 8 . . . . . 4(3) = 12 . . . . no, that doesn't work
<em>x=4</em> . . . . . 2^4 = <em><u>16</u></em> . . . . 4(4) = <em><u>16</u></em> . . . . Yes ! That works ! yay !
For the other one, I constructed tables of values for 2^x and (4x)
in a spread sheet, then graphed them, and looked for the point
where the graphs of the two expressions cross.
The point is near, but not exactly, <em>x = 0.30990693...
</em>If there's a way to find an analytical expression for the value, it must involve
some esoteric kind of math operations that I didn't learn in high school or
engineering school, and which has thus far eluded me during my lengthy
residency in the college of hard knocks.<em> </em> If anybody out there has it, I'm
waiting with all ears.<em>
</em>
The answer is 42kg/45kg or 14kg/15kg
Answer:
Step-by-step explanation:
your welcome