Pluto was discovered by the astronomer Clyde Tombaugh in February 1930. It was given the status of the ninth planet of the solar system.
As telescopes, particularly in on satellites, improved, more objects were discovered which caused a problem that they were quite small and some astronomers didn't think they qualified as being planets.
The International Astronomical Union (IAU) had a vote which was very close. They defined three criteria which a planet must satisfy.
It must be large enough for gravity to overcome structures of materials and make it spherical. Most bodies are flattened spheroids due to rotation.
It must orbit the Sun.
It must have cleared its orbit of other bodies other than moons.
The IAU created a new definition of an object called a dwarf planet which only satisfies the first two criteria. Pluto fails the third criterion, so it was demoted to a dwarf planet.
Many people, including myself, still consider Pluto to be the ninth planet.
To be pedantic, Jupiter has a lot of asteroids in its orbit at its two Lagrange points. They are called trojan asteroids. So, this means that Jupiter fails the IAU's third criterion and should be a dwarf planet, which it is certainly not!
The conductor is the metal wire inside or encased in the insulator, which as stated covers or insulates the conductor.
Metals are goods conductors of electricity because the electrons in the electrons sea are free to flow and carry electric currents. Metals are ductile and malleable because local bonds can be easily broken and reformed.
Large bodies of water<span> such as oceans, seas, and large lakes </span>affect<span> the </span>climate<span> of an area. </span>Water<span> heats and cools more slowly than land. Thus, in the summer, the </span>coastal<span> regions </span>will<span> stay cooler and in winter warmer. A more moderate </span>climate<span> with a smaller temperature range </span>is<span> created.</span>
Answer:
Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N
Explanation:
Total force required = Mass x Acceleration,
F = ma
Here we need to consider the system as combine, total mass need to be considered.
Total mass, a = m₁+m₂+m₃ = 584 + 838 + 322 = 1744 kg
We need to accelerate the group of rocks from the road at 0.250 m/s²
That is acceleration, a = 0.250 m/s²
Force required, F = ma = 1744 x 0.25 = 436 N
Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N