Answer:
ac = 72 m/s²
Fc = 504 N
Explanation:
We can find the centripetal acceleration of the hammer by using the following formula:

where,
ac = centripetal acceleration = ?
v = constant speed = 12 m/s
r = radius = 2 m
Therefore,

<u>ac = 72 m/s²</u>
<u></u>
Now, the centripetal force applied by the athlete on the hammer will be:

<u>Fc = 504 N</u>
Answer:
This is because it steps up or steps down electrical voltage. It multiplies either voltage (if it is a voltage transformer )or current (if it is a current transformer), but it does not multiply electrical power.
Explanation:
A transformer steps up or steps down electrical voltage, by transmitting power at a voltage, V₁ and Current I₁ at one terminal, to a voltage, V₂ and Current I₂ at its other terminals, just like a lever transmits force from one point to another. Since the power transmitted remains the same, (energy per unit time remains constant), I₁V₁ = I₂V₂ ⇒ I₁/I₂ = V₂/V₁ = n (the turns ratio of the transformer). So, the turns ratio will determine if its a step-up or step-down transformer. V₂ = nV₁. So, if V₁ > V₂ it is a step down transformer and if V₁ < V₂ it is a step-up transformer.It multiplies either voltage (if it is a voltage transformer )or current (if it is a current transformer), but it does not multiply electrical power, since P = IV = constant for the transformer.
You could use a magnetic generator or you could use hydraulic power
Answer:
t=1.623 sec
Explanation:
The distance traveled before the echo is had is:

Given the speed of sound as v=345m/s, we use the speed equation to solve for t:

Hence, it takes 1.623 seconds to hear the echo.
Answer: idk that is a tough one!
Explanation: that is a hard question IDK