Using the <u>normal distribution and the central limit theorem</u>, it is found that the interval that contains 99.44% of the sample means for male students is (3.4, 3.6).
In a normal distribution with mean
and standard deviation
, the z-score of a measure X is given by:
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation
.
In this problem:
- The mean is of
.
- The standard deviation is of
.
- Sample of 100, hence

The interval that contains 95.44% of the sample means for male students is <u>between Z = -2 and Z = 2</u>, as the subtraction of their p-values is 0.9544, hence:
Z = -2:

By the Central Limit Theorem




Z = 2:




The interval that contains 99.44% of the sample means for male students is (3.4, 3.6).
You can learn more about the <u>normal distribution and the central limit theorem</u> at brainly.com/question/24663213
The answer is 0.6, 5 or higher add one more, 4 or less stays the same
Answer:
78.53975
Find area of circle using radius, divide that by four
1 sunflower = $?
8 sunflowers = $18
Divide $18 by 8 = 2.25
1 sunflower is $2.25.
Answer:
We have the system:
x ≤ 7
x ≥ a
Now we want to find the possible values of a such that the system has, at least, one solution.
First, we should look at the value of a where the system has only one solution:
We can write the 2 sets as:
a ≤ x
x ≥ 7
So, writing both together:
a ≤ x ≤ 7
if a is larger than 7, we do not have solutions.
then a = 7 gives:
7 ≤ x ≤ 7
Here the only solution is 7.
Now, if a is smaller than 7, for example 5, we have:
5 ≤ x ≤ 7
Now x can take different values, so we have a lot of solutions.
Then the restrictions for a, such that the system has at least one solution, is:
a ≤ 7.