Answer:
3 x 10⁻⁹km
3 x 10⁻⁴cm
2.73 x 10⁶μm
Explanation:
A micron is a subunit of measurement usually for length dimensions.
1μm = 1 x 10⁻⁶m
a. How many microns make up 3km;
Now convert to meter first;
1000m = 1km
So, 3km will be made up of 3000m
So;
1 x 10⁻⁶m = 1μm
3000m =
=
= 3 x 10⁻⁹km
b. How many centimeters equal 3.0 μm?
Since;
1μm = 1 x 10⁻⁶m
3μm = 3 x 1 x 10⁻⁶ = 3 x 10⁻⁶m
So;
100cm = 1m;
1m = 100cm
3 x 10⁻⁶m = 3 x 10⁻⁶ x 10² = 3 x 10⁻⁴cm
c. How many microns are in 3.0 yd?
1yd = 0.91m
3yd = 3 x 0.91 = 2.73m
So;
1 x 10⁻⁶m = 1μm
2.73m will give
= 2.73 x 10⁶μm
Answer:
15.03 m
Explanation:
Given:
mass of the block, m = 7.25 kg
Angle, Θ = 28.5°
Initial speed of the block, v₀ = 15 m/s
let the distance traveled by the block be 's'
Now, applying the work energy theorem,
we have

on substituting the values in the above equation, we get

or

or

s = 15.03 m
Hence, the block will travel 15.03 m up the ramp
The power developed by the student is 756.9 J/s and remains the same if the student takes the same time to climb the stairs when climbing it in two's and three's.
<h3>What is power?</h3>
Power is the rate at work is done.
- Power = work done/time
- work done = mass × acceleration due to gravity × height
Work done = 65.5 × 10 × (18 × 0.165) = 1945.35 J
Power = 1945.35/2.57 = 756.9 J/s
If the student climbed the steps in two or three at a time, the power does not change if the time remains the same.
- Time required = Energy/ power
The time required to convert the Big Mac meal from McDonalds = 4 853 440/756.9
Time required = 6412.26 seconds
Therefore, from the power developed by the student, it will take him 6412.26 seconds to convert all the energy in a Big Mac meal.
Learn more about power at: brainly.com/question/1634438
#SPJ1
Distance= distance(initial)+v(initial)*t+0.5at^2
D=0+0*4+0.5*3*4^2
D=24 m
Complete question:
The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with negligible kinetic energy. The exit pressure is 80 kPa, and the process is reversible and adiabatic. Use constant specific heat at 300 K to find the exit velocity.
Answer:
The exit velocity is 629.41 m/s
Explanation:
Given;
initial temperature, T₁ = 1200K
initial pressure, P₁ = 150 kPa
final pressure, P₂ = 80 kPa
specific heat at 300 K, Cp = 1004 J/kgK
k = 1.4
Calculate final temperature;

k = 1.4

Work done is given as;

inlet velocity is negligible;

Therefore, the exit velocity is 629.41 m/s