1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fed [463]
3 years ago
7

Which best describes what forms in nuclear fission?A. two smaller, more stable nucleiB. two larger, less stable nucleiC. one sma

ller, less stable nucleusD. one larger, more stable nucleus
Physics
2 answers:
Step2247 [10]3 years ago
4 0

Answer:B. two larger, less stable nuclei

Explanation: They collied and don't combine

quester [9]3 years ago
4 0

Answer:

B) two larger, less stable nuclei

Explanation:

You might be interested in
You are working in a shoe test laboratory measuring the coefficients of friction for running shoes on a variety of surfaces. The
AnnZ [28]

Answer:

0.75

Explanation:

Since the static frictional force is the maximum force applied just before sliding, our frictional force, F is 300 N.

Since F = μN where μ = coefficient of static friction and N = normal force = 400 N (which is the downward force applied against the surface).

So, μ = F/N

= 300 N/400 N

= 3/4

= 0.75

So, the  coefficient of static friction μ = 0.75

6 0
3 years ago
Two basketballs of equal mass are rolling toward each other at constant velocities. The first basketball (B1) has a velocity of
slamgirl [31]

v'_2 = \frac{2m_1}{m_1+m_2} (4.3) - \frac{m_1-m_2}{m_1+m_2} (4.3)\\\\v'_1 = \frac{m_1-m_2}{m_1+m_2} (4.3) + \frac{2m_2}{m_1+m_2} (4.3)

<u>Explanation:</u>

Velocity of B₁ = 4.3m/s

Velocity of B₂ = -4.3m/s

For perfectly elastic collision:, momentum is conserved

m_1v_1 + m_2v_2 = m_1v'_1 + m_2v'_2

where,

m₁ = mass of Ball 1

m₂ = mass of Ball 2

v₁ = initial velocity of Ball 1

v₂ = initial velocity of ball 2

v'₁ = final velocity of ball 1

v'₂ = final velocity of ball 2

The final velocity of the balls after head on elastic collision would be

v'_2 = \frac{2m_1}{m_1+m_2} v_1 - \frac{m_1-m_2}{m_1+m_2} v_2\\\\v'_1 = \frac{m_1-m_2}{m_1+m_2} v_1 + \frac{2m_2}{m_1+m_2} v_2

Substituting the velocities in the equation

v'_2 = \frac{2m_1}{m_1+m_2} (4.3) - \frac{m_1-m_2}{m_1+m_2} (4.3)\\\\v'_1 = \frac{m_1-m_2}{m_1+m_2} (4.3) + \frac{2m_2}{m_1+m_2} (4.3)

If the masses of the ball is known then substitute the value in the above equation to get the final velocity of the ball.

5 0
3 years ago
When heat is added to an object, what is happening to the item at the atomic level? (Check all that apply)
3241004551 [841]

Answer:

a

Explanation:

heat is energy, energy cannot be made or destroyed but transferred

6 0
3 years ago
Read 2 more answers
This is an example of using a hammer as a(n)
barxatty [35]

, to hit nails into a piece of wood or a wall, or to break things into pieces.

3 0
3 years ago
Read 2 more answers
A packing crate rests on a horizontal surface. It is acted on by three horizontal forces: 600 N to the left, 200 N to the right,
egoroff_w [7]

Answer:

The resultant force would (still) be zero.

Explanation:

Before the 600-N force is removed, the crate is not moving (relative to the surface.) Its velocity would be zero. Since its velocity isn't changing, its acceleration would also be zero.

In effect, the 600-N force to the left and 200-N force to the right combines and acts like a 400-N force to the left.

By Newton's Second Law, the resultant force on the crate would be zero. As a result, friction (the only other horizontal force on the crate) should balance that 400-N force. In this case, the friction should act in the opposite direction with a size of 400 N.

When the 600-N force is removed, there would only be two horizontal forces on the crate: the 200-N force to the right, and friction. The maximum friction possible must be at least 200 N such that the resultant force would still be zero. In this case, the static friction coefficient isn't known. As a result, it won't be possible to find the exact value of the maximum friction on the crate.

However, recall that before the 600-N force is removed, the friction on the crate is 400 N. The normal force on the crate (which is in the vertical direction) did not change. As a result, one can hence be assured that the maximum friction would be at least 400 N. That's sufficient for balancing the 200-N force to the right. Hence, the resultant force on the crate would still be zero, and the crate won't move.

6 0
3 years ago
Other questions:
  • The radius of curvature is smaller at the top than on the sides so that the downward centripetal acceleration at the top will be
    12·1 answer
  • For a given initial velocity, how does the time td it takes to stop on dry snow differ from the time tw it takes to stop on wet
    11·1 answer
  • A baseball has a mass of 0.45 kg and is thrown with a speed of 25 m/s. what is the momentum of the baseball?
    11·2 answers
  • A device that uses the wet/dry bulb method to measure the ___________________is the sling psychrometer. As seen here, two thermo
    5·1 answer
  • Which of the following is NOT a characteristic of vibrations?
    7·2 answers
  • A boiler is being used to heat water. The graph shows the temperature of
    11·1 answer
  • A boy takes his dog for a walk. The dog pulls with 30N of force to the right and the boy pulls backward with 18 N of force.
    6·1 answer
  • A car starts from rest , then accelerates at 1.20 m/s^2 fo 7.00 s. It hits the brakes, slowing to a stop at a rate of -4.25 m/s^
    14·1 answer
  • A well-trained athlete can run 400m in 47s, what is the athlete’s velocity?
    12·1 answer
  • Help me pls im sturgguleing in scince.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!