T² caries directly as R³ .
This is Kepler's 3rd law of planetary motion .
If you are pushing the coin across the table at a constant rate, the friction of the table and the horizontal force of your hand pushing are equal, and the coin itself moves at a constant rate. If you push a coin and let it go, there is no horizontal force keeping the coin going. Friction slows the coin to a stop. In both cases, the gravitational downward pull of Earth is equally but oppositely resisted by the upward push of table on the coin.
<span>The moon is smaller and more dense than the Earth, and has less extreme temperature changes. The statement presented is True. In terms of temperature, since there is no atmosphere on the moon, then it has less extreme temperature changes. The moon can reach 253 Fahrenheit in the day and -387 Fahrenheit at night.</span>
Answer:
A, C, D
Explanation:
Newton's first law states that every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force.
and according to Newton's 4th law: An object that is at rest will stay at rest unless a force acts upon it. An object that is in motion will not change its velocity unless a force acts upon it.
Acceleration of the table: B. 0.50 meters/second2
Explanation:
The problem can be solved by using Newton's second law of motion, which states that the net force acting on an object is the product of its mass and its acceleration. Mathematically:

where
is the net force
m is the mass
a is the acceleration
For the table in this problem, we have:
is the net force on the table, because there are two forces of 125 N and 120 N acting in opposite directions
m = 10.0 kg is the mass of the table
Solving for a, we find the acceleration:

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly