Answer:
the velocity of the fish relative to the water when it hits the water is 9.537m/s and 66.52⁰ below horizontal
Explanation:
initial veetical speed V₀y=0
Horizontal speed Vx = Vx₀= 3.80m/s
Vertical drop height= 3.90m
Let Vy = vertical speed when it got to the water downward.
g= 9.81m/s² = acceleration due to gravity
From kinematics equation of motion for vertical drop
Vy²= V₀y² +2 gh
Vy²= 0 + ( 2× 9.8 × 3.90)
Vy= √76.518
Vy=8.747457
Then we can calculate the velocity of the fish relative to the water when it hits the water using Resultant speed formula below
V= √Vy² + Vx²
V=√3.80² + 8.747457²
V=9.537m/s
The angle can also be calculated as 
θ=tan⁻¹(Vy/Vx)
tan⁻¹( 8.747457/3.80)
=66.52⁰
the velocity of the fish relative to the water when it hits the water is 9.537m/s and 66.52⁰ below horizontal
 
        
             
        
        
        
Answer:
Fractional error = 0.17
Percent error = 17%
F = 112 ± 19 N
Explanation:
Plug in the values to find the force:
F = (3.5 kg) (20 m/s)² / (12.5 m) = 112 N
Find the fractional error:
ΔF/F = Δm/m + 2Δv/v + Δr/r
ΔF/F = 0.1/3.5 + 2(1/20) + 0.5/12.5
ΔF/F = 0.17
Multiply by 100% to find the percent error:
ΔF/F × 100% = 17%
Solve for the absolute error:
ΔF = 0.17 × 112 N = 19 N
Therefore, the force is:
F = 112 ± 19 N
 
        
             
        
        
        
The speed of the sound wave in the medium, given the data is 3900 m
<h3>Velocity of a wave </h3>
The velocity of a wave is related to its frequency and wavelength according to the following equation:
Velocity (v) = wavelength (λ) × frequency (f) 
v = λf
With the above formula, we can obtain the speed of the sound wave. Details below:
<h3>How to determine speed of the sound wave</h3>
The speed of the wave can be obtained as illustrated below:
- Frequency (f) = 600 Hz
- Wavelength (λ) = 6.5 m
- Velocity (v) =?
v = λf
v = 6.5 × 600
v = 3900 m
Thus, the speed of the sound wave in the medium is 3900 m
Learn more about wave:
brainly.com/question/14630790
#SPJ4
 
        
             
        
        
        
Answer: Light passes through the front of the eye (cornea) to the lens. The cornea and the lens help to focus the light rays onto the back of the eye (retina). The cells in the retina absorb and convert the light to electrochemical impulses which are transferred along the optic nerve and then to the brain.
Explanation:
When light rays reflect off an object and enter the eyes through the cornea (the transparent outer covering of the eye), you can then see that object. The cornea bends, or refracts, the rays that pass through the round hole of the pupil.
 
        
             
        
        
        
Answer: The correct answer is Image B.
Explanation: For an object to accelerate, there should be unbalanced forces present. An object will move in the direction of net force.
Balanced forces are defined as the forces acting on the same object which are equal in magnitude but act in opposite direction. The net forces are 0.
Unbalanced forces are defined as the forces acting on the same object which are unequal in magnitude. The net force is non-zero.
For the given images:
Image A: This box will accelerate easily because the net force is non-zero and is moving in right direction.
Image B: This box will not accelerate because the net force is zero as all the forces are balancing one another. Hence, the object will stay at rest.
Image C: This box will accelerate easily because the net force is non-zero and  is acting in between the normal and applied force.
Image D: This box will accelerate easily because the net force is non-zero and is moving in right direction.
Hence, the correct option is Image B.