For the given question above, I think there is an associated choice of answer for it. However, the answer for this is London Dispersion Forces. <span>Dipole-dipole forces and hydrogen bonding are much stronger, leading to higher melting and boiling points.</span>
Answer:
ΔU = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J
Explanation:
Since the electric potential at point 1 is V₁ = 33 V and the electric potential at point 2 is V₂ = 175 V, when the electron is accelerated from point 1 to point 2, there is a change in electric potential ΔV which is given by ΔV = V₂ - V₁.
Substituting the values of the variables into the equation, we have
ΔV = V₂ - V₁.
ΔV = 175 V - 33 V.
ΔV = 142 V
The change in electric potential energy ΔU = eΔV = e(V₂ - V₁) where e = electron charge = -1.602 × 10⁻¹⁹ C and ΔV = electric potential change from point 1 to point 2 = 142 V.
So, substituting the values of the variables into the equation, we have
ΔU = eΔV
ΔU = eΔV
ΔU = -1.602 × 10⁻¹⁹ C × 142 V
ΔU = -227.484 × 10⁻¹⁹ J
ΔU = -2.27484 × 10⁻²¹ J
ΔU ≅ -2.275 × 10⁻²¹ J
So, the required equation for the electric potential energy change is
ΔU = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J
Answer:
Solution
λ=v/n
Here, v=344 m s−1
n=22 MHz =22×106 Hz
λ=344/22×106=15.64×10−6m=15.64μm.
The name and strength of the force holding the block up is 50 N upward - Normal force.
The given parameters:
- <em>Mass of the block, m = 5 kg</em>
The weight of the block acting downwards due to gravity is calculated as follows;
W = mg
where;
- <em>g is acceleration due to gravity = 10 m/s²</em>
W = 5 x 10
W = 50 N <em>(</em><em>downwards</em><em>)</em>
Since the block is at rest, an a force equal to the weight of the block must be acting upwards. This force is known as normal reaction.
Fₙ = 50 N <em>(</em><em>upwards</em><em>)</em>
Thus, the name and strength of the force holding the block up is 50 N upward - Normal force.
Learn more about Normal force here: brainly.com/question/14486416
When salt is added, it makes it harder for the water molecules to escape from the pot and enter the gas phase, which happens when water boils, Giddings said. This gives salt water a higher boiling point, she said.