Answer:
gamma rays < X-ray < ultraviolet ray < visible light < infrared < radio wave
Explanation:
given light form,
A) radio waves,B) infrared,C) visible light,D) ultraviolet,E) X-rays,F) gamma rays
we know,
wavelength of radio wave = 10000 Km
wavelength of infrared = 700 nanometers (nm) to 1 millimeter (mm)
wavelength of visible light = 380 to 740 nm
wavelength of ultraviolet ray = 10 nm to 400 nm
wavelength of X-ray = 0.01 to 10 nm
wavelength of gamma rays = 100 picometer
so, the order of rays.
gamma rays < X-ray < ultraviolet ray < visible light < infrared < radio wave
While plane is moving under tailwind condition it took time "t"
so here we will have

here net speed of the plane will be given as


similarly when it moves under the condition of headwind its net speed is given as

now time taken to cover the distance is 2 hours more

now solving two equations

solving above for v_w we got

Potential energy is mass * gravity * height. (m*g*h).
350 = 17*9.8*h <--350 is its energy, 17kg is its mass, and 9.8 is gravity's acceleration on the object. We now just need to solve for h.
h = 350/(17 * 9.8) = 2.1 meters, which, when rounded to the nearest whole meter, is 2 meters.
The shelf is 2 meters high.
The answer is true about the cabins in commercial airliners that require pressurization.
<h3>Why are the cabins of commercial airplanes pressurized?</h3>
Airplanes are pressurized because the air is very thin at the high altitude where they fly. The passenger jet has a cruising altitude of about 30,000 - 40,000 feet. At this altitude or height, humans can't breathe very well and our body gets less amount of oxygen. Most aircraft cabins are pressurized to an altitude about 8,000 feet. This is called cabin altitude. Aircraft pilots have access to the control's mode of a cabin pressure control system and if needed it can command the cabin to depressurize.
So we can conclude that cabins in commercial airliners require pressurization because of the greater pressure of the surrounding environment.
Learn more about pressure here: brainly.com/question/28012687
#SPJ1
Answer:
B. The same on the moon.
Explanation:
The density of an object is the ratio of the mass contained by the object to the volume occupied by that mass.

When the object is taken from the earth to anywhere in the universe, its mass remains constant. The dimensions of the object and hence its volume also remains constant anywhere in the universe.
Therefore, the density of the object will also remain the same as it depends upon the mass and the volume of the object.
So, the correct option is:
<u>B. The same on the moon.</u>