Answer with explanation:
The function for which we have to find , the intervals on which the polynomial is entirely negative and those on which it is entirely positive.
f(x)= -x²+6 x -10
If you will find the root of the function, there is no real root.
To find the root we will use Discriminant formula
For a Quadratic function, ax²+b x+c=0,
→So,there is no interval in which the polynomial is entirely negative and those on which it is entirely positive, which can be represented in interval notation using Ф.
For, any value of x,the value of f(x) will be always Negative.
To find the vertex, put ,x-3=0
x=3
And, by putting , x= 3 ,in the equation we get
y = -1
So,Vertex = (3, -1)
⇒If you will try to find the intervals in which the function is increasing , means the curve is moving up is from (-∞, 3) and the intervals in which the function is decreasing , means the curve is moving downward is from , (3, ∞).