Geologists have a rule of thumb: when molten rock cools and solidifies, crystals of compounds with the smallest lattice energies appear at the bottom of the mass because of high power of solubility.
<h3>What is lattice energy? </h3>
The lattice energy is defined as the energy change upon the formation of one mole of crystalline ionic compound from its same constituent ions, that are assumed to be initially in the state of gases. It is also defined as measure of the cohesive forces which bind ionic solids together.
As the lattice energy of the ionic compound increase the solubility of that particular compound decrease. Hence compound which have low lattice energy are more soluble than compound having high lattice energy. When molten rocks cools and solidified, the compound having smallest lattice energy become more soluble than crystals of compound which have large lattice energy. Therefore, crystal of compound with the smallest lattice energy start appearing at the bottom of the mass.
Thus, we concluded that due to high solubility power of compound with low lattice energy appear at the bottom of the mass.
learn more about lattice energy:
brainly.com/question/13169815
#SPJ4
Answer:
D. 15.8atm
Explanation:
Given parameters:
Initial pressure = 13atm
Initial temperature = 34°C = 34 + 273 = 307K
Final temperature = 100°C = 100 + 273 = 373K
Unknown:
Final pressure = ?
Solution:
To solve this problem, we apply a derivation of the combined gas law taking the volume as a constant.
The expression is shown mathematically below;
=
P and T pressure and temperature values
1 and 2 are initial and final states
Insert the parameters and solve for T₂;
=
P₂ = 15.8atm
<span>In the 19th century, scientists realized that gases in the atmosphere cause a "greenhouse effect" which affects the planet's temperature. These scientists were interested chiefly in the possibility that a lower level of carbon dioxide gas might explain the ice ages of the distant past. At the turn of the century, Svante Arrhenius calculated that emissions from human industry might someday bring a global warming. Other scientists dismissed his idea as faulty. In 1938, G.S. Callendar argued that the level of carbon dioxide was climbing and raising global temperature, but most scientists found his arguments implausible. It was almost by chance that a few researchers in the 1950s discovered that global warming truly was possible. In the early 1960s, C.D. Keeling measured the level of carbon dioxide in the atmosphere: it was rising fast. Researchers began to take an interest, struggling to understand how the level of carbon dioxide had changed in the past, and how the level was influenced by chemical and biological forces. They found that the gas plays a crucial role in climate change, so that the rising level could gravely affect our future. (This essay covers only developments relating directly to carbon dioxide, with a separate essay for Other Greenhouse Gases. Theories are discussed in the essay on Simple Models of Climate.)</span>
The answer is <span>The components of a homogeneous mixture are evenly distributed.
In a homogeneous mixture, all components are evenly distributed. They are known as solutions. In a heterogeneous mixture, components are not evenly distributed. It consists of visibly different components. For example, milk is the homogeneous mixture, you cannot see its particles. But milk and cereals are the heterogeneous mixtures.</span>
Sugar is considered an organic compound,
Because it is made up a long chain of carbon atoms.