In Fructose, there are 4 carbon atoms. Fructose is a 5 atom molecule, and one of these is oxygen, therefore, the other 4 are carbon.
In Galactose, there are 6 carbon atoms.
Hope this helps :)
Answer:
Temperature required = 923K
Explanation:
The question is incomplete as there are some details that has to be given. details like the values of the standard enthalpies and entropies of the reactants and product as this is needed to calculate the actual value of the standard enthalpies and standard entropies of the reaction. I was able to get those values from literature and then calculated what needs to be calculated.
From there, I was able to use the equation that shows the relationship between, gibb's free energy, enthalpy, entropy and temperature. The necessary mathematical manipulation were done and the values were plugged in to get the temperature required to make the reaction spontaneous.
A few notes on the Gibb's free energy.
The Gibb's free energy also referred to as the gibb's function represented with letter G. it is the amount of useful work obtained from a system at constant temperature and pressure. The standard gibb's free energy on the other hand is a state function represented as Delta-G, as it depends on the initial and final states of the system.
The spontaneity of a reaction is explained by the standard gibb's free energy.
- If Delta-G = -ve ( the reaction is spontaneous)
- if Delta -G = +ve ( the reaction is non-spontaneous)
- if Delta-G = 0 ( the reaction is at equilibrium)
The step by step calculations is done as shown in the attachment.
Answer:
K
Explanation:
Since the blood moves from the body to the right atrium to the right ventricle
These two factors are:
*radiation coming into the Earth's atmosphere
*radiation going out the Earth's atmosphere
These two factors could be lumped into one natural phenomenon called the greenhouse effect. The Earth's atmosphere is a very unique characteristic in the solar system because it makes the planet livable. Without the atmosphere's work, the day would be too hot and the night would be too cold. The trapping of radiation, hence heat, keeps the overall temperature of the Earth.