Answer:
Manganese trinitrate or manganese(III) nitrate
Explanation:
SO₄²⁻ +NH₃ → SO₃²⁻ + H₂O +N₂
The balanced of the above redox reaction is as below
3SO₄²⁻ + 2NH₃ → 3SO₃²⁻ + 3 H₂O + N₂
Explanation
According to the law of mass conservation the number of atoms in the reactant side must be equal to number of atoms in product side.
Inserting coefficient 3 in front of SO₄² , 2 in front of NH₃, 3 in front of SO₃²⁻ and 3 in front of H₂O balance the equation above. This is because the number of atoms are equal in both side.
for example there are 2 atoms of N in both side of the reaction.
Using PV=nRT or the ideal gas equation, we substitute n= 15.0 moles of gas, V= 3.00L, R equal to 0.0821 L atm/ mol K and T= 296.55 K and get P equal to 121.73 atm. The Van der waals equation is (P + n^2a/V^2)*(V-nb) = nRT. Substituting a=2.300L2⋅atm/mol2 and b=0.0430 L/mol, P is equal to 97.57 atm. The difference is <span>121.73 atm- 97.57 atm equal to 24.16 atm.</span>
Lambda = h\ Mv
lambda = 6.624 x 10^-34 / 9.1 x 10^-31 x 2.5 x 10^7
lambda = 2.9 x 10^-11 is your wavelength
The resistance of the heating element is 21.61 Ω
Given
The power dissipated = 1500 W
Voltage = 180 V
We know that
Power = Voltage * Current
⇒ Power / Voltage = Current
⇒ 1500 W/180 V = Current
⇒ 8.33 A = Current
In order to calculate the resistance of the heating element. We Have to apply the formula
Power = (Current)^2 * Resistance
⇒ Resistance = Power / (Current)^2
⇒ Resistance = 1500 W/ (8.33) ^2
⇒ Resistance = 21.61 Ω
Hence the resistance of the heating element is 21.61 Ω
Learn more about resistance here: -
“ brainly.com/question/17330679 “
#SPJ4