Answer:
30 L H2
Explanation:
- 10 L N2 x <u>3 L H2</u> = 30 L H2
. 1 L N2
Try to verify my answer, Stoichiometry is not easy for me.
Answer:
3.3 moles of H₂O.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
4NH₃ + 5O₂ —> 6H₂O + 4NO
From the balanced equation above,
4 moles of NH₃ reacted to produce 6 moles of H₂O.
Finally, we shall determine the number of mole of H₂O produced by the reaction of 2.2 moles of NH₃. This can be obtained as follow :
From the balanced equation above,
4 moles of NH₃ reacted to produce 6 moles of H₂O.
Therefore, 2.2 moles of NH₃ will react to produce = (2.2 × 6)/4 = 3.3 moles of H₂O.
Thus, 3.3 moles of H₂O were obtained from the reaction.
Answer:
Temperature is a common type of controlled variable. If a temperature is held constant during an experiment, it is controlled. Other examples of controlled variables could be an amount of light, using the same type of glassware, constant humidity, or duration of an experiment.
Explanation:
Adopting the number of avogrado 6.02 * 10²³ / mol
<span>Sodium chloride (table salt)</span> Molar Mass = 58.44 g / mol
We will first have to find the number of moles in 35 grams of the element, like this:
1 mol ----------------- 58.44 g
X ---------------------- 35 g
58.44 * x = 35 * 1
58.44x = 35

X = 0.598904...
X ≈ 0.60<span> mol </span>
Now we will find how many atoms there are in 0.60 mol of this element, like this:
1 mol -------------------- 6.02 * 10²³ atoms
0.60 mol ----------------- X
X = 0.60 * 6.02 * 10²³
Answer:
CaCO3
Explanation:
The molecule is formed by the calcium cation Ca+2 and the carbonate anion CO3−2.