Answer:
Every sample of a given substance has identical intensive properties because every sample has the same composition
<span>Raising
the temperature of the reactants increases the reaction between the reactants.
The kinetic energy of the molecules of the reactants collides more frequently
with ach other thereby increasing its reaction. Increasing the concentration of
the reactants increases the reaction rate. Adding a catalyst to the reaction
increases the rate of reaction of a substance. The catalyst hastens the
chemical reaction. </span>
To calculate the molarity of a solution, you divide the moles of solute by the volume of the solution expressed in liters. Note that the volume is in liters of solution and not liters of solvent. When a molarity is reported, the unit is the symbol M and is read as “molar”.
I hope this helped :)
Please make me the branliest! Have a good night/ good day!!
Answer:
The mass of C2H2 in the mixture is 0.56gram using the ratio of carbon in the products contributed by the C2H2.
Explanation:
The balanced equation for the reaction is: C3H8 + 2C2H2 + 10O2 >> 7CO2 + 6H2O.
From the reaction, we know that the oxygen was in excess, this will make the Carbon sources the limiting agents in the reaction. The details of the reaction showed that the ratio of water to the carbon dioxide is 1.6:1. This also means that the expected mole of carbon dioxide will be 7/1.6, which is 3.75moles.
The individual balanced equation of reaction is:
C3H3 +5O2 >> 3CO2 + 4H2O
and 2C2H2 + 5O2 >>4CO2 + 2H2O. From this one can quickly tell that the propane is in sufficient supply as it produces 3 moles of CO2 out of the expected 3.75 moles obtained above. Leaving 0.75moles of CO2 to the ethyne.
The mass of ethyne in the mixture will therefore be: 0.75/3.75 X 2.8 = 0.56g.