Answer:
no it's an acute triangle
Step-by-step explanation:
why? because any angle below 90 degrees is considered an acute triangle which in your case 20,24, and 36 are all very far from being a right triangle
Answer:
3:1
Step-by-step explanation:
Take the fraction and simplify it:
12/4 = 3/1
Use this rule: <em>(x^a)^b = x^ab</em>
3(x + 2)^3/5 + 2 = 27
Subtract 3 from both sides
3(x + 2)^3/5 = 27 - 3
Simplify 27 - 3 to 24
3(x + 2)^3/5 = 24
Divide both sides by 3
(x + 2)^3/5 = 24/3
Simplify 24/3 to 8
(x + 2)^3/5 = 8
Take the cube root of both sides
x + 2 = 3/5√8
Invert and multiply
x + 2 = 8^5/3
Calculate
x + 2 = 2^5
Simplify 2^5 to 32
x + 2 = 32
Subtract 2 from both sides
x = 32 - 2
Simplify 32 - 3 to 30
<u>x = 30</u>
Answer:25
Step-by-step explanation:Count all the wholes then put all the halves and there is 25
(a) First find the intersections of

and

:

So the area of

is given by

If you're not familiar with the error function

, then you will not be able to find an exact answer. Fortunately, I see this is a question on a calculator based exam, so you can use whatever built-in function you have on your calculator to evaluate the integral. You should get something around 0.5141.
(b) Find the intersections of the line

with

.

So the area of

is given by


which is approximately 1.546.
(c) The easiest method for finding the volume of the solid of revolution is via the disk method. Each cross-section of the solid is a circle with radius perpendicular to the x-axis, determined by the vertical distance from the curve

and the line

, or

. The area of any such circle is

times the square of its radius. Since the curve intersects the axis of revolution at

and

, the volume would be given by