21 cups/ 4.2L per cup =5 L total
Hope this helps!!
The complete question in the attached figure
we have that
tan a=7/24 a----> III quadrant
cos b=-12/13 b----> II quadrant
sin (a+b)=?
we know that
sin(a + b) = sin(a)cos(b) + cos(a)sin(b<span>)
</span>
step 1
find sin b
sin²b+cos²b=1------> sin²b=1-cos²b----> 1-(144/169)---> 25/169
sin b=5/13------> is positive because b belong to the II quadrant
step 2
Find sin a and cos a
tan a=7/24
tan a=sin a /cos a-------> sin a=tan a*cos a-----> sin a=(7/24)*cos a
sin a=(7/24)*cos a------> sin²a=(49/576)*cos²a-----> equation 1
sin²a=1-cos²a------> equation 2
equals 1 and 2
(49/576)*cos²a=1-cos²a---> cos²a*[1+(49/576)]=1----> cos²a*[625/576]=1
cos²a=576/625------> cos a=-24/25----> is negative because a belong to III quadrant
cos a=-24/25
sin²a=1-cos²a-----> 1-(576/625)----> sin²a=49/625
sin a=-7/25-----> is negative because a belong to III quadrant
step 3
find sin (a+b)
sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
sin a=-7/25
cos a=-24/25
sin b=5/13
cos b=-12/13
so
sin (a+b)=[-7/25]*[-12/13]+[-24/25]*[5/13]----> [84/325]+[-120/325]
sin (a+b)=-36/325
the answer issin (a+b)=-36/325
Answer:
Step-by-step explanation:
We are given the following in the question:
The needle size should not be too big and too small.
The diameter of the needle should be 1.65 mm.
We design the null and the alternate hypothesis

Sample size, n = 35
Sample mean,
= 1.64 mm
Sample standard deviation, s = 0.07 mm
Type I error:
- It is the error of rejecting the null hypothesis when it is true.
- It is also known as false positive error.
- It is the rejecting of a true null hypothesis.
Thus, type I error in this study would mean we reject the null hypothesis that the average diameter is 1.65 mm but actually the average diameters of the needle is 1.65 mm.
Thus, average diameter is 1.65 mm and we decide that it is not 1.65 mm.
Answer:
y= -4x+4
Step-by-step explanation:
y=mx+b
where x=-1, y=8, and m=-4
8=(-4)(-1)+b
8=4+b
4=b
Thus, y= -4x+4