![\bf \cfrac{\sqrt[4]{63}}{4\sqrt[4]{6}}\qquad \begin{cases} 63=3\cdot 3\cdot 7\\ 6=2\cdot 3 \end{cases}\implies \cfrac{\sqrt[4]{3\cdot 3\cdot 7}}{4\sqrt[4]{2\cdot 3}}\implies \cfrac{\underline{\sqrt[4]{3}}\cdot \sqrt[4]{3}\cdot \sqrt[4]{7}}{4\sqrt[4]{2}\cdot \underline{\sqrt[4]{3}}} \\\\\\ \cfrac{\sqrt[4]{3}\cdot \sqrt[4]{7}}{4\sqrt[4]{2}}\implies \cfrac{\sqrt[4]{3\cdot 7}}{4\sqrt[4]{2}}\implies \cfrac{\sqrt[4]{21}}{4\sqrt[4]{2}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B63%7D%7D%7B4%5Csqrt%5B4%5D%7B6%7D%7D%5Cqquad%20%0A%5Cbegin%7Bcases%7D%0A63%3D3%5Ccdot%203%5Ccdot%207%5C%5C%0A6%3D2%5Ccdot%203%0A%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B3%5Ccdot%203%5Ccdot%207%7D%7D%7B4%5Csqrt%5B4%5D%7B2%5Ccdot%203%7D%7D%5Cimplies%20%5Ccfrac%7B%5Cunderline%7B%5Csqrt%5B4%5D%7B3%7D%7D%5Ccdot%20%5Csqrt%5B4%5D%7B3%7D%5Ccdot%20%5Csqrt%5B4%5D%7B7%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%5Ccdot%20%5Cunderline%7B%5Csqrt%5B4%5D%7B3%7D%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B%5Csqrt%5B4%5D%7B3%7D%5Ccdot%20%5Csqrt%5B4%5D%7B7%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B3%5Ccdot%207%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D)
![\bf \textit{now, rationalizing the denominator}\\\\ \cfrac{\sqrt[4]{21}}{4\sqrt[4]{2}}\cdot \cfrac{\sqrt[4]{2^3}}{\sqrt[4]{2^3}}\implies \cfrac{\sqrt[4]{21}\cdot \sqrt[4]{8}}{4\sqrt[4]{2}\cdot \sqrt[4]{2^3}}\implies \cfrac{\sqrt[4]{21\cdot 8}}{4\sqrt[4]{2\cdot 2^3}}\implies \cfrac{\sqrt[4]{168}}{4\sqrt[4]{2^4}} \\\\\\ \cfrac{\sqrt[4]{168}}{4\cdot 2}\implies \cfrac{\sqrt[4]{168}}{8}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bnow%2C%20rationalizing%20the%20denominator%7D%5C%5C%5C%5C%0A%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D%5Ccdot%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B2%5E3%7D%7D%7B%5Csqrt%5B4%5D%7B2%5E3%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%7D%5Ccdot%20%5Csqrt%5B4%5D%7B8%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%5Ccdot%20%5Csqrt%5B4%5D%7B2%5E3%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%5Ccdot%208%7D%7D%7B4%5Csqrt%5B4%5D%7B2%5Ccdot%202%5E3%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B168%7D%7D%7B4%5Csqrt%5B4%5D%7B2%5E4%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B%5Csqrt%5B4%5D%7B168%7D%7D%7B4%5Ccdot%202%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B168%7D%7D%7B8%7D)
and is all you can simplify from it.
so... all we did, was rationaliize it, namely, "getting rid of the pesky radical at the bottom", we do so by simply multiplying it by something that will raise the radicand, to the same degree as the root, thus the radicand comes out.
Answer: 220
<u>Step-by-step explanation:</u>
Children (x): $2
Teens (y): $3, 
Adults: (z): $5
Quantity: x + y + z = 570 ⇒ x +
+ z = 570 ⇒ 1.75x + z = 570
Cost: 2x + 3y + 5z = 1950 ⇒ 2x + 3
+ 5z = 1950 ⇒ 2x + 2.25x + 5z = 1950 ⇒ 4.25x + 5z = 1950
Qty: 1.75x + z = 570 → 5(1.75x + z = 570) → 8.75x + 5z = 2850
Cost: 4.25x + 5z = 1950 → -1(4.25x + 5z = 1950 → <u> -4.25x - 5z</u> = <u>-1950 </u>
4.50x = 900
x = 200
Teens (y):
y =
=
= 150
Quantity: x + y + z = 570
200 + 150 + z = 570
350 + z = 570
z = 220
The equation 3x - 2y = 8 and 6x - 4y = 16 are systems of equations with infinite solutions.
A linear system of equations can have (a)unique solutions, (b) infinite number of solutions, or (c) no solution.
For it to have infinite number of solutions, the graph of the equations must intercept with each other at infinite points, leaving the two graphs overlaying each other.
Given the equation, 3x - 2y = 8, the other equation in a linear system to have infinite number of solutions with it must be the exact same line.
To do this, simply multiply the whole equation with a real number.
Example:
Multiplying the whole equation by 2 gives 6x - 4y = 16.
Now, 3x - 2y = 8 and 6x - 4y = 16 are equations in a linear system with infinite number of solutions.
If you want to know more about systems of equations with infinite solutions, visit brainly.com/question/27927692.
#SPJ4
Answer:
Rational
Step-by-step explanation:
A number that cannot be expressed that way is irrational. For example, one third in decimal form is 0.33333333333333 (the threes go on forever). However, one third can be express as 1 divided by 3, and since 1 and 3 are both integers, one third is a rational number.
<span>The graph of f(x - 3) is a horizontal shift of f(x) = x3 three units to the right.
I hope this helps. </span>