Answer:
Heat required to raise the temperature of the aluminium is 4750 J
Explanation:
As we know that the heat energy required to raise the temperature of the aluminium is given as

here we know that
m = 50 g


so we have


The distance at which the man slips is 0.3 m
Newton's Second Law, F = ma, is used to calculate the braking distance. By dividing the mass of the car by the gravitational acceleration, one may determine its weight. The weight of the car multiplied by the coefficient of friction equals the brake force.
Given-
mass of man= 70 kg
frictional coefficient μ=0.02
mass of body thrown= m2 = 3kg
let s be the stopping distance
we know that frictional force = F= μN
=μMg= 0.02 x 70 x 10
=14 N
∴acceleration, a= 14/70 = 0.2 m/s²
now on applying conservation of linear momentum
pi=pf pi=0 (initially at rest)
0=m1v1-m2v2 (v1= velocity of man) (v2=velocity of body= 8m/s
v1= m2v2 /m1= 0.3 m/s
we know,
v²- u² = -2as
0- (0.3) ²= -2 x 0.2 x 5
s= 0.09/0.4 ≈ 0.3 m
Learn more about distance here-
brainly.com/question/15172156
#SPJ4
solution:
As Given plane is flying in east direction.
It throws back some supplies to designated target.
Time taken by the supply to reach the target =10 seconds
g = Acceleration due to gravity = - 9.8 m/s²[Taken negative as object is falling Downwards]
As we have to find distance from the ground to plane which is given by d.
d = 
=
meters
Distance from the ground where supplies has to be land to plane = Option B =490 meters
200 Hz = 200 cycles per sec
<span>1 cycle, the period = 1/200 = 0.005 seconds, or 5 milli seconds.</span>
Answer:
16.9000000000000001 J
Explanation:
From the given information:
Let the initial kinetic energy from point A be
= 1.9000000000000001 J
and the final kinetic energy from point B be
= ???
The charge particle Q = 6 mC = 6 × 10⁻³ C
The change in the electric potential from point B to A;
i.e. V_B - V_A = -2.5 × 10³ V
According to the work-energy theorem:
-Q × ΔV = ΔK




