Answer:
a)
b)
c)
d)
m
e)λ=∞
Explanation:
De Broglie discovered that an electron or other mass particles can have a wavelength associated, and that wavelength (λ) is:

with h the Plank's constant (
) and P the momentum of the object that is mass (m) times velocity (v).
a)

b)

c)

d)
m
e) 
λ=∞
Net Force = (mass) x (acceleration) (Newton #2)
Net Force = (50 kg) x (6 m/s² down)
Net Force = (50 * 6) (kg-m/s² down)
<em>Net Force = 300 Newtons down</em>
Answer:
Tp/Te = 2
Therefore, the orbital period of the planet is twice that of the earth's orbital period.
Explanation:
The orbital period of a planet around a star can be expressed mathematically as;
T = 2π√(r^3)/(Gm)
Where;
r = radius of orbit
G = gravitational constant
m = mass of the star
Given;
Let R represent radius of earth orbit and r the radius of planet orbit,
Let M represent the mass of sun and m the mass of the star.
r = 4R
m = 16M
For earth;
Te = 2π√(R^3)/(GM)
For planet;
Tp = 2π√(r^3)/(Gm)
Substituting the given values;
Tp = 2π√((4R)^3)/(16GM) = 2π√(64R^3)/(16GM)
Tp = 2π√(4R^3)/(GM)
Tp = 2 × 2π√(R^3)/(GM)
So,
Tp/Te = (2 × 2π√(R^3)/(GM))/( 2π√(R^3)/(GM))
Tp/Te = 2
Therefore, the orbital period of the planet is twice that of the earth's orbital period.
True because all switches use contacts to start or stop the flow of electrons in a circuit
Answer:
Vi = 8.28 m/s
Explanation:
This problem is related to the projectile motion.
As we know there are two components of motion associated with this, the horizontal component and vertical component.
The horizontal distance covered by the ball is
Vx*t = x
Vx*t = 5.3
Vx = 5.3/t eq. 1
Also we know that
Vx = Vicos(60)
Vx = Vi*0.5 eq. 2
equate eq. 1 and eq. 2
5.3/t = Vi*0.5
5.3/0.5 = Vi*t
Vi*t = 10.6 eq. 3
The vertical distance is
Vy = y1 + Vyi*t - 0.5gt²
also we know that
Vyi = Visin(60)
Vyi = Vi*0.866
It is given that V1 = 1.9 m and and Vy = 3 m is the vertical distance
3 = 1.9 + Vi*0.866*t - 0.5gt²
3 = 1.9 + Vi*0.866*t - 0.5(9.8)t²
3 = 1.9 + 0.866(Vi*t) - 0.5(9.8)t²
3 = 1.9 + 0.866(Vi*t) - 0.5(9.8)t²
1.1 = 0.866(Vi*t) - 4.9t²
0.866(Vi*t) = 4.9t² + 1.1
substitute Vi*t = 10.6 in above equation
0.866(10.6) = 4.9t² + 1.1
9.18 = 4.9t² + 1.1
4.9t² = 8.08
t² = 8.08/4.9
t² = 1.648
t = 1.28 sec
Finally, initial speed can be found by substituting the value of t into eq. 3
Vi*t = 10.6
Vi = 10.6/t
Vi = 10.6/1.28
Vi = 8.28 m/s