Answer:
A jet plane flying straight and at level at constant speed
Explanation:
The<em> inertial frame </em>of reference is a frame of reference in which all <em>Newton law is valid</em> ie Newton second law of motion and therefore newton first law of motion holds good. <em>The frame of reference does not accelerate.</em>
All the object that is in the frame of reference are at rest or moving with constant rectilinear motion with constant velocity unless acted upon by any force.
Jumping on a trampoline is a classic example of conservation of energy, from potential into kinetic. It also shows Hooke's laws and the spring constant. Furthermore, it verifies and illustrates each of Newton's three laws of motion.
<u>Explanation</u>
When we jump on a trampoline, our body has kinetic energy that changes over time. Our kinetic energy is greatest, just before we hit the trampoline on the way down and when you leave the trampoline surface on the way up. Our kinetic energy is 0 when you reach the height of your jump and begin to descend and when are on the trampoline, about to propel upwards.
Potential energy changes along with kinetic energy. At any time, your total energy is equal to your potential energy plus your kinetic energy. As we go up, the kinetic energy converts into potential energy.
Hooke's law is another form of potential energy. Just as the trampoline is about to propel us up, your kinetic energy is 0 but your potential energy is maximized, even though we are at a minimum height. This is because our potential energy is related to the spring constant and Hooke's Law.
Answer:
Yes cause he walks 6.7 miles
Answer:
f = 8 %
Explanation:
given,
density of body of fish = 1080 kg/m³
density of air = 1.2 Kg/m³
density of water = 1000 kg/m²
to protect the fish from sinking volume should increased by the factor f
density of fish + density of water x increase factor = volume changes in water
1080 +f x 1.2 =(1 + f ) x 1000
1080 + f x 1.2 = 1000 + 1000 f
998.8 f = 80
f = 0.0800
f = 8 %
the volume increase factor of fish will be equal to f = 8 %