Answer:
≈9
Step-by-step explanation:
V= πr^2(h/3)
1356.48= πr^2(16/3)
r= 8.99 or about 9
Answer:
base=3.3=cm
Step-by-step explanation:
9.1 cm
There are 180 numbers which are three-digit multiples of 5.
According to the statement
we have to find the three digit numbers which are multiples of 5.
we know that three digit numbers are start from 100 to 999 and in 1 line of counting means 100 to 110 there are 2 numbers are multiples of 5.
Here we use Multiplication method to find the number of digit which are a multiple of 5.
It means there are two numbers which are multiples of 5 in the one line of counting and there are 90 lines of counting from 100 to 999.
So, it means the answer will become
2*90 = 180.
So, There are 180 numbers which are three-digit multiples of 5.
Learn more about NUMBERS here brainly.com/question/1094036
#SPJ1
Answer:
<em>Thus, the dimensions of the desk in the drawing are 4 cm long and 2 cm wide.</em>
Step-by-step explanation:
<u>Scaling</u>
The scale factor established to represent a desk 2 meters long and 1 meter wide is:
1 centimeter = 0.5 meter
We need to convert the real dimensions to the scaled dimensions. To complete the task, it's a good idea to multiply the real dimensions by the ratio:
![\displaystyle \frac{1\ cm}{0.5\ m}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B1%5C%20cm%7D%7B0.5%5C%20m%7D)
to get the scaled dimensions.
The length of 2 meters is scaled to:
![\displaystyle 2\ m\frac{1\ cm}{0.5\ m}=4\ cm](https://tex.z-dn.net/?f=%5Cdisplaystyle%202%5C%20m%5Cfrac%7B1%5C%20cm%7D%7B0.5%5C%20m%7D%3D4%5C%20cm)
And the width of 1 meter is scaled to:
\displaystyle 1\ m\frac{1\ cm}{0.5\ m}=2 cm
Thus, the dimensions of the desk in the drawing are 4 cm long and 2 cm wide.
Answer:
5x - 2y - 23 = 0
Step-by-step explanation:
Line is passing through the points
Equation of line in two point form is given as:
![\frac{y -y_1 }{y_1 -y_2 } = \frac{x -x_1 }{x_1 -x_2 } \\ \\ \therefore \: \frac{y -( - 4) }{ - 4 -1} = \frac{x -3 }{3 -5 } \\ \\ \therefore \:\frac{y + 4 }{ - 5} = \frac{x -3 }{ - 2 } \\ \\ \therefore \: \frac{y + 4 }{ 5} = \frac{x -3 }{ 2 } \\ \\ \therefore \: 2(y + 4) = 5(x - 3) \\ \therefore \: 2y + 8 = 5x - 15 \\ \therefore \: 5x - 15 - 2y - 8 = 0 \\ \red{ \boxed{ \bold{\therefore \: 5x - 2y - 23 = 0}}} \\ is \: the \: required \: equation \: of \: line \: in \: \\ standard \: form.](https://tex.z-dn.net/?f=%20%5Cfrac%7By%20-y_1%20%7D%7By_1%20-y_2%20%7D%20%20%3D%20%20%5Cfrac%7Bx%20-x_1%20%7D%7Bx_1%20-x_2%20%7D%20%5C%5C%20%20%5C%5C%20%20%5Ctherefore%20%5C%3A%20%20%5Cfrac%7By%20-%28%20-%204%29%20%7D%7B%20-%204%20-1%7D%20%20%3D%20%20%5Cfrac%7Bx%20-3%20%7D%7B3%20-5%20%7D%20%5C%5C%20%20%5C%5C%20%20%5Ctherefore%20%5C%3A%5Cfrac%7By%20%20%2B%20%204%20%7D%7B%20-%205%7D%20%20%3D%20%20%5Cfrac%7Bx%20-3%20%7D%7B%20-%202%20%7D%20%5C%5C%20%20%5C%5C%20%20%5Ctherefore%20%5C%3A%20%5Cfrac%7By%20%20%2B%20%204%20%7D%7B%20%205%7D%20%20%3D%20%20%5Cfrac%7Bx%20-3%20%7D%7B%20%202%20%7D%20%5C%5C%20%20%5C%5C%20%20%5Ctherefore%20%5C%3A%20%202%28y%20%2B%204%29%20%3D%205%28x%20-%203%29%20%5C%5C%20%5Ctherefore%20%5C%3A%20%202y%20%2B%208%20%3D%205x%20-%2015%20%5C%5C%20%5Ctherefore%20%5C%3A%205x%20-%2015%20-%202y%20-%208%20%3D%200%20%5C%5C%20%20%5Cred%7B%20%5Cboxed%7B%20%5Cbold%7B%5Ctherefore%20%5C%3A%205x%20-%202y%20-%2023%20%3D%200%7D%7D%7D%20%5C%5C%20is%20%5C%3A%20the%20%5C%3A%20required%20%5C%3A%20equation%20%5C%3A%20of%20%5C%3A%20line%20%5C%3A%20in%20%5C%3A%20%20%5C%5C%20standard%20%5C%3A%20form.)