1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kherson [118]
4 years ago
8

Stacy earns $96,000 a year. How much money does she earn each month?

Mathematics
1 answer:
vekshin14 years ago
5 0
12 months in a year
12months=1year

96000/1year=96000/12months, 8000/1month

so earns $8000 permonth
You might be interested in
Does anyone know the correct choice for this question? If its correct ill mark you as the best answer choice! Please!
victus00 [196]

Answer:

H

Step-by-step explanation:

Once graphed, the line passes through (-4,2) while the others do not

7 0
3 years ago
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
3 years ago
A florist was looking at her flower order. The ratio of roses to sunflowers was 4 to 9. When she was done, she realized there we
IRINA_888 [86]

Answer:

52 roses and 117 sunflowers

Step-by-step explanation:

Since the ratio of roses to sunflowers is 4:9, we can represent how many there are of each as 4x and 9x, respectively. We know that there are 65 more sunflowers than roses, so we can set up the following equation to solve for x:

4x+65=9x

Solving for x, we get:

4x+65=9x

4x+65-4x=9x-4x (Subtract 4x from both sides of the equation to isolate x)

65=5x (Simplify)

5x=65 (Symmetric Property of Equality)

\frac{5x}{5}=\frac{65}{5} (Divide both sides of the equation by 5 to get rid of x's coefficient)

x=13 (Simplify)

Therefore, since x=13, we know that there are 4x=4*13=52 roses and 9x=9*13=117 sunflowers. Hope this helps!

4 0
3 years ago
Sld;fn;sdlfhs;lfnskfhssf
Irina-Kira [14]

<h2><u>PLEASE MARK BRAINLIEST!</u></h2>

Answer:

The best answer is 12.4 units.

Step-by-step explanation:

This is because, when I totaled all of the side lengths, I got an estimated result of 12 units. 12.4 is the next closest answer, so your answer is 12.4

I hope this helps!

- sincerelynini

6 0
3 years ago
Read 2 more answers
For this exercise assume that all matrices are ntimesn. Each part of this exercise is an implication of the form​ "If "statement
inna [77]

Answer:

C. True; by the Invertible Matrix Theorem if the equation Ax=0 has only the trivial solution, then the matrix is invertible. Thus, A must also be row equivalent to the n x n identity matrix.

Step-by-step explanation:

The Invertible matrix Theorem is a Theorem which gives a list of equivalent conditions for an n X n matrix to have an inverse. For the sake of this question, we would look at only the conditions needed to answer the question.

  • There is an n×n matrix C such that CA=I_n.
  • There is an n×n matrix D such that AD=I_n.
  • The equation Ax=0 has only the trivial solution x=0.
  • A is row-equivalent to the n×n identity matrix I_n.
  • For each column vector b in R^n, the equation Ax=b has a unique solution.
  • The columns of A span R^n.

Therefore the statement:

If there is an n X n matrix D such that AD=​I, then there is also an n X n matrix C such that CA = I is true by the conditions for invertibility of matrix:

  • The equation Ax=0 has only the trivial solution x=0.
  • A is row-equivalent to the n×n identity matrix I_n.

The correct option is C.

5 0
4 years ago
Other questions:
  • PROOF: Triangle ABC is a right isosceles triangle by hypotenuse AB. M is the midpoint of AB. Select a coordinate proof to show t
    6·2 answers
  • What are all of the real roots of the following polynomial? f(x) = x4 - 13x2 + 36
    14·2 answers
  • The function with a rate of change of 3/2 whose graph passes through the point (4,10.5)
    9·1 answer
  • For equal intervals, _____ functions have equal factors.
    8·2 answers
  • Giving brianliest for BOTH answers! &lt;3
    5·1 answer
  • Marcia has stuffed animal collection . She has 10 dogs and 15 teddy bears .What is the ratio of digs to bears​
    12·2 answers
  • ive been reposting this question forever i really need help if u answer correctly i will mark brainliest look at the image i upl
    6·1 answer
  • I need the answer to the question
    7·1 answer
  • What would x be equal to?
    14·1 answer
  • Hi please help i’ll give brainliest
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!