Hi there!
The formula for the area of a triangle is A = 1/2(b x h). Using the information provided, all we have to do is plug in what we know and solve!
WORK:
74 = 1/2(b x 9.14)
148 = b x 9.14
b = 16.2 inches (approximately)
Hope this helps!! :)
Answer:
14 mm squared is the area
Step-by-step explanation:
Considering there is a function (relationship) and that it is linear, the distance will change proportionally to time constantly. In other words, we are taking the speed to be constant throughout the journey.
If we let:
t = time (min's) driving
d = distance (miles) from destination
Then we can represent the above information as:
t = 40: d = 59
t = 52: d = 50
If we think of this as a graph, we can think of the x-axis representing time and the y-axis representing the distance to the destination. Being linear, the function will be a line, i.e. it will have a constant gradient. If you were plot the two points inferred from the information and connect the two dots, you will get a declining line (one with a negative gradient) representing the inversely proportional relationship or equally, the negative correlation between the time driving and the distance to the destination. The equation of this line will be the linear function that relates time and the distance to the destination. To find this linear function, we do as follows:
Find the gradient (m) of the line:
m = Δy/Δx
In this case, the x-values are t-values and our y-values are d-values, so:
Δy = Δd
= 50 - 59
= -9
Δx = Δt
= 52 - 40
= 12
m = -9/12 = -3/4
Note: m is equivalent to speed with units: d/t
Use formula to find function and rearrange to give it in the desired format:
y - y₁ = m(x - x₁)
d - 50 = -3/4(t - 52)
4d - 200 = -3t + 156
4d + 3t - 356 = 0
Let t = 70 to find d at the time:
4d + 3(70) - 356 = 0
4d + 210 - 356 = 0
4d - 146 = 0
4d = 146
d = 73/2 = 36.5 miles
So after 70 min's of driving, Dale will be 36.5 miles from his destination.
2x - 3y = - 13
the equation of a line in standard form is
Ax + By = C ( A is a positive integer and B, C are integers )
First obtain the equation in slope-intercept form
y = mx + c ( m is the slope and c the y-intercept )
calculate m using the gradient formula
m = ( y₂ - y₁ ) / (x₂ - x₁ )
with (x₁, y₁ ) = (1, 5 ) and (x₂, y₂ ) = (- 2, 3 )
m =
=
= 
y =
x + c ← partial equation
to find c substitute either of the 2 points into the partial equation
using (1, 5 ), then
5 =
+ c ⇒ c = 
rearrange the equation into standard form
multiply through by 3
3y = 2x + 13 ( subtract 3y and 13 from both sides )
2x - 3y = - 13 ← in standard form
Answer:
The legs of a 45 45 90 triangle are congruent so if one leg is x we can write (using the Pythagorean Theorem):
x² + x² = 18²
2x² = 324
x² = 162
x = 9√2