1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
telo118 [61]
4 years ago
5

The speed of sound is 330.0 m/s and the wave length of a particular sound wave is 33.0 meters. Calculate the frequency of the so

und wave.
A)11,000 Hz B)10.0 Hz C) 0.10 Hz D)9.1 x 10-5 Hz
Physics
2 answers:
Alekssandra [29.7K]4 years ago
6 0
V: velocity of wave
f: frequency 
L: wavelenght

<span>v = fL => f = v/L => f = (330)/(33) => L = 10Hz</span>
Nataly [62]4 years ago
6 0

Answer:

B). f = 10.0 Hz

Explanation:

As we know the relation between frequency, wavelength and speed is given as

v = f \lambda

here we know that

v = 330 m/s

\lambda = 33 m

now in order to find the frequency of the sound we can use above relation as

f = \frac{v}{\lambda}

plug in all values in it

f = \frac{330}{33}

f = 10 Hz

You might be interested in
An artillery shell is fired with an initial velocity of 300 m/s at 52.0° above the horizontal. To clear an avalanche, it explode
sasho [114]

The x- and y-coordinates are 9142.57 m and -304.425 m

<u>Explanation:</u>

As the motion of the shell is in a plane (two dimensional space) and the acceleration is that due to gravity which is vertically downward, we resolve initial velocity of the shell v_{0} in horizontal and vertical directions. If the initial velocity of the shell is making angle with the horizontal, the horizontal component of initial velocity will be

                v_{x}=v_{0} \times \cos \theta

As the acceleration of the shell is vertical having no horizontal component, the shell may be considered to move horizontally with constant velocity of v_{x} and hence the horizontal distance covered (or the x coordinate of the shell with point of projection as origin) is given by

           v_{x}=v_{o} \times \cos \theta=300 \times \cos \left(52^{\circ}\right)=184.69 \mathrm{m} / \mathrm{s}

           v_{y}=v_{o} \times \sin \theta==300 \times \sin \left(52^{\circ}\right)=236.4 \mathrm{m} / \mathrm{s}

For motion with constant acceleration, we know

            s=s_{0}+v_{0} t+\left(\frac{(1)}{2}\right) a t^{2}

Along the horizontal, x-axis, we might write this as

            x=x_{0}+v_{x 0} t+\left(\frac{1}{2}\right) a_{x} t^{2}

Measuring distances relative to the firing point means

               x_{0}=0

we know that,

              a_{x}=0

or,

             v_{x}=v_{x 0}=\text { constant }

By applying the values, we get,

           x=0+(184.69 \times 49.5)+\left(\left(\frac{1}{2}\right) \times 0 \times(49.5)^{2}\right)=9142.57 \mathrm{m}

The acceleration of gravity is vertically downward and is g=-9.8 \mathrm{m} / \mathrm{s}^{2} , hence the vertical distance covered (or y coordinate of the shell) is given by the second equation of motion

           y=y_{0}+v_{y 0} t+\left(\frac{1}{2}\right) a_{y} t^{2}

we know, y_{0}=0 and a_{y}=-9.8 \mathrm{m} / \mathrm{s}^{2}, so,

          y=0+(236.4 \times 49.5)+\left(\left(\frac{1}{2}\right) \times(-9.8) \times(49.5)^{2}\right)

                 y = 11701.8 - 4.9(2450.25)= 11701.8 - 12006.225 = - 304.425 m

7 0
3 years ago
You collect some more data on that horse at a later time interval, but now you are measuring thehorse’s velocity, not its positi
Monica [59]

Answer:

a)  x(t) = 10t + (2/3)*t^3

b) x*(0.1875) = 10.18 m

Explanation:

Note: The position of the horse is x = 2m. There is a typing error in the question. Otherwise, The solution to cubic equation holds a negative value of time t.

Given:

- v(t) = 10 + 2*t^2 (radar gun)

- x*(t) = 10 + 5t^2 + 3t^3  (our coordinate)

Find:

-The position x of horse as a function of time t in radar system.

-The position of the horse at x = 2m in our coordinate system

Solution:

- The position of horse according to radar gun:

                              v(t) = dx / dt = 10 + 2*t^2

- Separate variables:

                              dx = (10 + 2*t^2).dt

- Integrate over interval x = 0 @ t= 0

                             x(t) = 10t + (2/3)*t^3

- time @ x = 2 :

                              2 = 10t + (2/3)*t^3

                              0 = 10t + (2/3)*t^3 + 2

- solve for t:

                              t = 0.1875 s

- Evaluate x* at t = 0.1875 s

                              x*(0.1875) = 10 + 5(0.1875)^2 + 3(0.1875)^3

                              x*(0.1875) = 10.18 m

3 0
3 years ago
If a 340 g ball has 2.4 J of kinetic energy, what is it's velocity?
Leno4ka [110]

Answer:

Explanation:

i really dont know im a 4th grader

6 0
3 years ago
Read 2 more answers
Calculate the kinetic energy in joules of a ball of mass 40g moving at a velocity of 4 metres per second​
AfilCa [17]
Given : A ball of mass 40 g moving at a velocity of 4 m/s.
To find : Calculate the kinetic energy in joules ?
Solution :
The kinetic energy formula is given by,

where, v is the velocity v=4 m/s
m is the mass m=40 g
Convert g into kg,



Substitute the values,



Therefore, the kinetic energy is 0.32 Joules.
6 0
2 years ago
An electric drill transfers 200 J of energy into a useful kinetic energy store. It also transfers 44 J of energy by sound and 48
kramer

Answer:

Er = 108 [J]

Explanation:

To solve this problem we must understand that the total energy is 200 [J]. Of this energy 44 [J] are lost in sound and 48 [J] are lost in heat. In such a way that these energy values must be subtracted from the total of the kinetic energy.

200 - 44 - 48 = Er

Where:

Er = remaining energy [J]

Er = 108 [J]

3 0
3 years ago
Other questions:
  • If a question asks about velocity in a projectile, is it referring to the vertical or horizontal velocity? An example where this
    14·1 answer
  • A negatively charged particle is attracted to
    7·2 answers
  • A 4.2 kg parachutist is moving straight downward with a speed of 3.85 m/s
    8·1 answer
  • If two point sources of light are being imaged by this telescope, what is the maximum wavelength λ at which the two can be resol
    13·1 answer
  • A fishing pole is an example of a compound machine. What simple machines are used to make up this compound machine?
    11·2 answers
  • At what speed (in m/s) will a proton move in a circular path of the same radius as an electron that travels at 8.00 ✕ 106 m/s pe
    12·1 answer
  • A modified Atwood machine is at rest. The hanging block has a mass of 3kg. The black on wheels has unknown mass M1. When release
    11·1 answer
  • A car has a velocity of 10m/s.it now accelerates for 1m/s for 1/4 minutes. Find the distance travelled in this time and final sp
    7·1 answer
  • Light containing two different wavelengths passes through a diffraction grating with 1,250 slits/cm. On a screen 17.5 cm from th
    8·1 answer
  • how many years would it take to reach the star from earth, as measured by observers on the spacecraft
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!