Answer:
Car A is not accelerating, but car B is accelerating
Explanation:
Car A is not accelerating because , it is moving with uniform speed in a particular direction . Therefore its velocity too is not changing .
But car B is accelerating because , though its speed is uniform but its velocity is changing due to change in direction . On a circular path , direction of speed changes every moment . Therefore it has an acceleration called centripetal acceleration . Hence car B has acceleration.
The force of gravity is much weaker than the strong nuclear force. But the strong nuclear force only acts over short distances, such as within the nuclues. The gravitational force can act over infinite distance.
Answer:
Option C.
Impulse = mass × change in velocity
Explanation:
Impulse is defined by the following the following formula:
Impulse = force (F) × time (t)
Impulse = Ft
From Newton's second law of motion,
Force = change in momentum /time
Cross multiply
Force × time = change in momentum
Recall:
Impulse = Force × time
Thus,
Impulse = change in momentum
Recall:
Momentum = mass x velocity
Momentum = mv
Chang in momentum = mass × change in velocity
Change in momentum = mΔv
Thus,
Impulse = change in momentum
Impulse = mass × change in velocity
Answer:
0.2 kg
Explanation:
PE = mgh
6 J = m (9.8 m/s²) (3.00 m)
m = 0.2 kg
Answer:
Δe=0.578 kJ/kg
Explanation:
Given data
Velocity v₁=0 m/s
Velocity v₂=34 m/s
to find
Specific energy change Δe
Solution
The specific energy change is simply determined from change in velocity
Δe=(v₂²-v₁²)/2
Put the given values to find the specific energy change

Δe=0.578 kJ/kg