1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aev [14]
3 years ago
14

How would the force of gravity between two objects change if the distance

Physics
1 answer:
DIA [1.3K]3 years ago
3 0

Answer:

d

Explanation:

You might be interested in
At the moment t = 0, a 20.0 V battery is connected to a 5.00 mH coil and a 6.00 Ω resistor. (a) Immediately thereafter, how does
insens350 [35]

(a) On the coil: 20 V, on the resistor: 0 V

The sum of the potential difference across the coil and the potential difference across the resistor is equal to the voltage provided by the battery, V = 20 V:

V = V_R + V_L

The potential difference across the inductance is given by

V_L(t) = V e^{-\frac{t}{\tau}} (1)

where

\tau = \frac{L}{R}=\frac{0.005 H}{6.00 \Omega}=8.33\cdot 10^{-4} s is the time constant of the circuit

At time t=0,

V_L(0) = V e^0 = V = 20 V

So, all the potential difference is across the coil, therefore the potential difference across the resistor will be zero:

V_R = V-V_L = 20 V-20 V=0

(b) On the coil: 0 V, on the resistor: 20 V

Here we are analyzing the situation several seconds later, which means that we are analyzing the situation for

t >> \tau

Since \tau is at the order of less than milliseconds.

Using eq.(1), we see that for t >> \tau, the exponential becomes zero, and therefore the potential difference across the coil is zero:

V_L = 0

Therefore, the potential difference across the resistor will be

V_R = V-V_L = 20 V- 0 = 20 V

(c) Yes

The two voltages will be equal when:

V_L = V_R (2)

Reminding also that the sum of the two voltages must be equal to the voltage of the battery:

V=V_L +V_R

And rewriting this equation,

V_R = V-V_L

Substituting into (2) we find

V_L = V-V_L\\2V_L = V\\V_L=\frac{V}{2}=10 V

So, the two voltages will be equal when they are both equal to 10 V.

(d) at t=5.77\cdot 10^{-4}s

We said that the two voltages will be equal when

V_L=\frac{V}{2}

Using eq.(1), and this last equation, this means

V e^{-\frac{t}{\tau}} = \frac{V}{2}

And solving the equation for t, we find the time t at which the two voltages are equal:

e^{-\frac{t}{\tau}}=\frac{1}{2}\\-\frac{t}{\tau}=ln(1/2)\\t=-\tau ln(0.5)=-(8.33\cdot 10^{-4} s)ln(0.5)=5.77\cdot 10^{-4}s

(e-a) -19.2 V on the coil, 19.2 V on the resistor

Here we have that the current in the circuit is

I_0 = 3.20 A

The problem says this current is stable: this means that we are in a situation in which t>>\tau, so the coil has no longer influence on the circuit, which is operating as it is a normal circuit with only one resistor. Therefore, we can find the potential difference across the resistor using Ohm's law

V=I_0 R = (3.20 A)(6.0 \Omega)=19.2 V

Then the battery is removed from the circuit: this means that the coil will discharge through the resistor.

The voltage on the coil is given by

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

which means that it is maximum at the moment when the battery is disconnected, when t=0:

V_L(0)=.V

And V this time is the voltage across the resistor, 19.2 V (because the coil is now connected to the resistor, not to the battery). So, the voltage across the coil will be -19.2 V, and the voltage across the resistor will be the same in magnitude, 19.2 V (since the coil and the resistor are connected to the same points in the circuit): however, the signs of the potential difference will be opposite.

(e-b) 0 V on both

After several seconds,

t>>\tau

If we use this approximation into the formula

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

We find that

V_L = 0

And since now the resistor is directly connected to the coil, the voltage in the resistor will be the same as the coil, so 0 V. This means that the coil has completely discharged, and current is no longer flowing through the circuit.

7 0
3 years ago
what is the magnitude of g at a height above earth surface where free fall acceleration equal 6.5m/s2
ZanzabumX [31]
The magnitude of gravity is expressed in terms of its acceleration. So the magnitude of ' g ' at that altitude is exactly 6.5 m/s^2.
8 0
3 years ago
Name the four fundamental fores at work inside an atom. Tell what each one does.​
STALIN [3.7K]

Answer:

Four fundamental forces are gravitational, electromagnetic, strong, and weak.

Explanation:

The gravitational and electromagnetic interactions, which produce significant long-range forces whose effects can be seen directly in everyday life and the strong and weak interactions, which produce forces at minuscule, subatomic distances and govern nuclear interactions.

6 0
2 years ago
Hideki is having trouble completing long workouts. What does he need to improve?
KonstantinChe [14]
He needs to improve his endurance time.
3 0
3 years ago
Order the layers, with the oldest at the bottom and most recent at the top.
givi [52]

Answer:

adbce i think

Explanation:

7 0
3 years ago
Other questions:
  • What percentage of the mass of the solar nebula consisted of elements other than hydrogen and helium?
    13·2 answers
  • The distance from earth to teh sun usb approxximately 93 million miles. a scientist would write that number as
    11·1 answer
  • The inner and outer surfaces of a cell membrane carry a negative and positive charge, respectively. Because of these charges, a
    5·1 answer
  • Physical Science
    9·1 answer
  • What is the potential energy of the system composed of the three charges q1, q3, and q4, when q1 is at point R? Define the poten
    6·1 answer
  • Which part of the larynx is the opening between the vocal folds where vibration occurs?
    15·1 answer
  • A theory that stands the test of time and becomes the basis for a field of
    9·2 answers
  • Help plssss 30 point this time
    5·1 answer
  • Correct displacement 4km south,2 km north, 5km south, and 5 km north
    10·1 answer
  • It takes a truck 3.56 seconds to slow down from 112 km/h to 87.4 km/h. What is its average acceleration?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!