Answer: When a ray of light approaches a smooth polished surface and the light ray bounces back, it is called the reflection of light. The incident light ray which lands upon the surface is said to be reflected off the surface. The ray that bounces back is called the reflected ray.<u>
</u>
<u>
</u>
<u>
</u>Have a great day and stay safe !
Answer:
(B) 0.5 g
Explanation:
Newton's second law says ∑ F i = m a .
the rate of change in momentum of a body is proportional to the force applied on the body.
f∝ma
f=kma
were k is constant and equal to 1
The centripetal acceleration is an acceleration.
the tension on the swing and object weight goes to the left hand side while the centripetal acceleration goes to the right handside
At the bottom of the swing, ΣF = FT – mg = mac;
notice that the tension in the swing is 1.5 times the weight of the object
we can write
1.5mg – mg = mac,
0.5mg = mac
0.5 g=ac
The resultant force in the direction the truck is headed is:
734N*cos(31) + 1084N*cos(23)
629N+998N = 1627N
Answer:
12 m
Explanation:
The object is in uniformly accelerated motion, so the distance covered can be found using the following suvat equation:

where
s is the distance
u is the initial velocity
t is the time
a is the acceleration
For this problem,

and
u = 0, since we are considering the first second of motion
So, substituting t = 1 s, we find

Answer:
Train accaleration = 0.70 m/s^2
Explanation:
We have a pendulum (presumably simple in nature) in an accelerating train. As the train accelerates, the pendulum is going move in the opposite direction due to inertia. The force which causes this movement has the same accaleration as that of the train. This is the basis for the problem.
Start by setting up a free body diagram of all the forces in play: The gravitational force on the pendulum (mg), the force caused by the pendulum's inertial resistance to the train(F_i), and the resulting force of tension caused by the other two forces (F_r).
Next, set up your sum of forces equations/relationships. Note that the sum of vertical forces (y-direction) balance out and equal 0. While the horizontal forces add up to the total mass of the pendulum times it's accaleration; which, again, equals the train's accaleration.
After doing this, I would isolate the resulting force in the sum of vertical forces, substitute it into the horizontal force equation, and solve for the acceleration. The problem should reduce to show that the acceleration is proportional to the gravity times the tangent of the angle it makes.
I've attached my work, comment with any questions.
Side note: If you take this end result and solve for the angle, you'll see that no matter how fast the train accelerates, the pendulum will never reach a full 90°!