Answer:
A. Increasing the voltage of the battery
Explanation:
The relationship between voltage, V, current, I and resistance, R, is given as follows;
V = I × R
∴ I = V/R
From the above relationship, the current flowing in the circuit is directly proportional to the voltage of the battery, and inversely proportional to the resistance, 'R', of the circuit
Therefore, increasing the voltage, 'V', of the battery, increases the total current, 'I', flowing in the circuit.
Answer:
a)
b)
c)
d)
Explanation:
From the question we are told that:
Population percentage 
Sample size 
Let x =customers ask for water
Let y =customers dose not ask for water with their meal
Generally the equation for y is mathematically given by

Generally the equation for pmf p(x) is mathematically given by

a)
Generally the probability that exactly 6 ask for water is mathematically given by


b)
Generally the probability that less than 9 ask for water with meal is mathematically given by




c)
Generally the probability that at least 3 ask for water with meal is mathematically given by

![p(x\geq3)=1-[p(0)+p(1)+p(2)]](https://tex.z-dn.net/?f=p%28x%5Cgeq3%29%3D1-%5Bp%280%29%2Bp%281%29%2Bp%282%29%5D)
![p(x\geq3)=1-[0.00001+0.0015+0.0106]](https://tex.z-dn.net/?f=p%28x%5Cgeq3%29%3D1-%5B0.00001%2B0.0015%2B0.0106%5D)
![p(x\geq3)=1-[0.0122]](https://tex.z-dn.net/?f=p%28x%5Cgeq3%29%3D1-%5B0.0122%5D)

d)
Generally the mean and standard deviation of sample size is mathematically given by
Mean

Standard deviation


<span>For a point mass the moment of inertia is just
the mass times the square of perpendicular distance to the rotation axis, I =
mr^2. That point mass relationship becomes the basis for all other moments of
inertia since any object can be built up from a collection of point masses. So the
I = (1.2 kg)(0.66m/2)^2 = 0.1307 kg m2</span>
The formula for velocity vf = vi + at
First list your given information
2m/s Is your initial velocity (vi)
6m/s is you final velocity (vf)
2 seconds is your time (t)
Since you want the a for acceleration get a by itself
a = (vf-vi)/t
So a= (6-2)/2
a= 4/2
a=2
Now units
the units for acceleration are m/s

2m/s