1) Size of the image: 2 cm
In order to calculate the size of the image, we can use the following proportion:

where
p = 80 m is the distance of the tree from the pinhole
q = 20 cm = 0.2 m is the distance of the image from the pinhole
= 8 m is the heigth of the object
is the height of the image
By re-arranging the proportion, we find

2) Magnification: 0.0025
The magnification of a camera is given by the ratio between the size of the image and the size of the real object:

so, in this problem we have

That's the description of the SOLID phase of matter.
C. The strong nuclear force is only attractive and acts over shorter distances
From the answers provided, I believe the possible answer would be the last option, silicon, oxygen, and one or more metals. Here's my reasoning: the most abundant mineral group found in the Earth's crust is the silicate group. The silicate materials contain both oxygen and silicon. Silicates are the most common minerals in the rock-formation process, and it has, in fact, been estimated that they make up 75 to 90 percent of the Earth's crust. From this piece of evidence, I can guess that the answer will possibly be D, silicon, oxygen, and one or more metals.
It should also be noted that the additional elements that combine with the silicon-oxygen tetrahedron are involved with the other elements commonly found in the Earth's crust and mantle. They are aluminum, calcium, iron, magnesium, potassium and sodium.
Answer:
a) 0.568 kg
b) 474 kg/m³
Explanation:
Given:
Inner radius = 8.82 cm = 0.0882 m
Outer radius = 9.91 cm = 0.0991 m
Density of the liquid = 948.00 Kg/m³
a) The volume of the sphere =
or
volume of sphere = 0.0012 m³
also, volume of half sphere =
or
volume of half sphere =
or
Volume of half sphere =0.0006 m³
Now, from the Archimedes principle
Mass of the sphere = Weight of the volume of object submerged
or
Mass of the sphere = 0.0006× 948.00 = 0.568 kg
b) Now, density =
or
Density =
or
Density = 474 kg/m³