Answer:
v = 0.6c = 1.8 x 10⁸ m/s
Explanation:
From Einstein's theory of relativity, we know that the length of an object contracts while traveling at a speed relative to speed of light. The contraction is according to following equation:

where,
L = Relative Length
L₀ = Rest Length
According to given:
L = 0.8 L₀
c = speed of light = 3 x 10⁸ m/s
v = relative speed of train = ?
Therefore,

squaring on both sides:

taking square root on both sides:
<u>v = 0.6c = 1.8 x 10⁸ m/s</u>
Answer: 
Explanation:
Given
Initial angular speed is 
Final angular speed is 
Time period 
Magnitude of the fan's acceleration is given by

Insert the values

Thus, fan angular acceleration is 
Answer:
a. 05cm from x axis
b. 8cm from x axis
Explanation:
If the net magnetic field is zero and the currents are in the same direction then the thanks point is between the currents i1 and i2 as show in the attachment below
a. Given that i1= 5A and i2=3A
Let assume the null point is xcm from current i1, then the null point will be (4-x)cm from current i2 since the total length is 4cm.
Now the magnetic field of the current i1 from the null point= to magnetic field of current i2 from the null point
B1=B2
μi1/2πx=μi2/2π(4-x)
i1/x=i2/(4-x)
5/x=3/(4-x)
20-5x=3x
8x=20
8x=2.5cm
since from the left of x axis is 2cm, then the null point is 2.5-2 which 0.5cm from the origin x axis.
The null point is 0.5cm from the origin x axis
b. If both current are flowing in opposite direction, the null point lies outside of the current.
Then with same analysis let assume the first current i1 is xcm from the null point and since the total length is 4cm the second current i2 will be (x-4)cm from the null point.
Also the magnetic field of the current i1 from the null point = to magnetic field of current i2 from the null point
B1=B2
μi1/2πx=μi2/2π(x-4)
i1/x=i2/(x-4)
5/x=3/(x-4)
5x-20=3x
2x=20
x=10cm.
This shows that the distance of the null point from current i1 is 10cm and the current i1 is 2cm from the x axis, then the null point is 10-2=8cm from the origin x axis.
The null point is 8cm from the x axis.
Check the attachment to see the diagram of the current and the null points
The sample of the solid in grams is 5.5g
HOW TO CALCULATE SPECIFIC HEAT CAPACITY:
- The quantity of heat absorbed or released by a substance can be calculated using the following formula:
Q = m × c × ∆T
Where;
Q = quantity of heat absorbed/released (cal)
m = mass of the substance (g)
c = specific heat (cal/g°C)
∆T = change in temperature (°C)
- According to the information provided in this question:
Q = 7.90Kcal = 7900cal
m = ?
c = 11.5 cal/g°C
T1 = 135K = 135K − 273.15 = -138.1°C
T2 = 260K = 260K − 273.15 = -13.15°C
∆T = -13.15 - (-138.1) = 124.95°C
- Hence, the mass of the substance can be calculated as follows:
m = Q ÷ c∆T
m = 7900 ÷ (11.5 × 124.95)
m = 7900 ÷ 1436.93
m = 5.5grams.
Therefore, the sample of the solid in grams is 5.5g.
Learn more: brainly.com/question/21643161?referrer=searchResults