The answer is c
Explanation:
Answer:
200 N
Explanation:
For a body moving in uniform circular motion, the force acting on it will be <em>centripetal force</em> and its direction is <em>radially inward</em> , pointing to the center.
The radially inward acceleration, or the centripetal acceleration is given by :
a = v² / r
where v is the speed at which the body is moving and r is the radius of the circle
Given-
m = 55kg
v = 14.1 m/s
r= 55m
We know that F = ma
⇒ F = m ( v²/ r )
⇒ F = 55 x 14.1 x 14.1 / 55
⇒ F =14.1 x 14.1 = 200 N
∴ <em>The force acting is 200 N</em>.
This would be the definition of a resistor. These components inhibit or “resist” the flow of a current.
Hope this helps!
Answer:
u = - 38.85 m/s^-1
Explanation:
given data:
acceleration = 2.10*10^4 m/s^2
time = 1.85*10^{-3} s
final velocity = 0 m/s
from equation of motion we have following relation
v = u +at
0 = u + 2.10*10^4 *1.85*10^{-3}
0 = u + (21 *1.85)
0 = u + 38.85
u = - 38.85 m/s^-1
negative sign indicate that the ball bounce in opposite directon
One of the concepts to be used to solve this problem is that of thermal efficiency, that is, that coefficient or dimensionless ratio calculated as the ratio of the energy produced and the energy supplied to the machine.
From the temperature the value is given as

Where,
T_L = Cold focus temperature
T_H = Hot spot temperature
Our values are given as,
T_L = 20\° C = (20+273) K = 293 K
T_H = 440\° C = (440+273) K = 713 K
Replacing we have,



Therefore the maximum possible efficiency the car can have is 58.9%