Acceleration = final velocity - inital / time
a = 75-10 / 7
a = 65 / 7
a = 9.29 m/s^2
Answer:
Work = F * s where s is the distance F moves
Since F is stationary, in this case, "no work" is done by either person
Answer:
i 5.3 cm ii. 72 cm
Explanation:
i
We know upthrust on iron = weight of mercury displaced
To balance, the weight of iron = weight of mercury displaced . So
ρ₁V₁g = ρ₂V₂g
ρ₁V₁ = ρ₂V₂ where ρ₁ = density of iron = 7.2 g/cm³ and V₁ = volume of iron = 10³ cm³ and ρ₂ = density of mercury = 13.6 g/cm³ and V₂ = volume of mercury displaced = ?
V₂ = ρ₁V₁/ρ₂ = 7.2 g/cm³ × 10³ cm³/13.6 g/cm³ = 529.4 cm³
So, the height of iron above the mercury is h = V₂/area of base iron block
= 529.4 cm³/10² cm² = 5.294 cm ≅ 5.3 cm
ρ₁V₁g = ρ₂V₂g
ii
ρ₁V₁ = ρ₃V₃ where ρ₁ = density of iron = 7.2 g/cm³ and V₁ = volume of iron = 10³ cm³ and ρ₃ = density of water = 1 g/cm³ and V₃ = volume of water displaced = ?
V₃ = ρ₁V₁/ρ₃ = 7.2 g/cm³ × 10³ cm³/1 g/cm³ = 7200 cm³
So, the height of column of water is h = V₃/area of base iron block
= 7200 cm³/10² cm² = 72 cm
Answer:
Mutual inductance, 
Explanation:
(a) A toroidal solenoid with mean radius r and cross-sectional area A is wound uniformly with N₁ turns. A second thyroidal solenoid with N₂ turns is wound uniformly on top of the first, so that the two solenoids have the same cross-sectional area and mean radius.
Mutual inductance is given by :

(b) It is given that,


Radius, r = 10.6 cm = 0.106 m
Area of toroid, 
Mutual inductance, 

or

So, the value of mutual inductance of the toroidal solenoid is
. Hence, this is the required solution.