Hi,Find answers from Task 5
1.(X+4)+(X)+(X+4)+(X)=50cm
4x+8=50cm
4x=42
X=10.5cm
Length=10.5+4=14.5cm
Width=10.5cm
Area= length × width=(10.5/100) × (14.5/100) =0.0152m2
2. Volume of a sphere= 4/3 ×π×r³
4/3 ×π×r³=3.2×10^-6 m³
r³=3.2×10^-6 m³/1.33×π
r³=7.64134761e-7
r=0.00914m
Surface area of the blood drop= 4πr²
=4×3.142×0.00914×0.00914=0.00105m²
3.
Equation of an ideal gas = PV =n RT
Equation for pressure, = P= n RT/V
Equation for the volume of an ideal gas= V= n RT/P
If the volume of gas doubles ,V(new)= 2n RT/P
Equation for temperature of an ideal gas, T = PV/n R
If temperature of gas triples, T (new)= 3PV/n R
New Equation for Pressure, = n× R× (3PV/n R)/(2n RT/P)
Pressure factor increase= P(new)/P(old) ={ n× R× (3PV/n R)/(2n RT/P)}/{ n RT/V}
=3PV²/2n RT
The answer is c so the area can grow
Answer:
The water level rises more when the cube is located above the raft before submerging.
Explanation:
These kinds of problems are based on the principle of Archimedes, who says that by immersing a body in a volume of water, the initial water level will be increased, raising the water level. That is, the height in the container with water will rise in level. The difference between the new volume and the initial volume of the water will be the volume of the submerged body.
Now we have two moments when the steel cube is held by the raft and when it is at the bottom of the pool.
When the cube is at the bottom of the water we know that the volume will increase, and we can calculate this volume using the volume of the cube.
Vc = 0.45*0.45*0.45 = 0.0911 [m^3]
Now when a body floats it is because a balance is established in the densities, the density of the body and the density of the water.
![Ro_{H2O}=R_{c+r}\\where:\\Ro_{H2O}= water density = 1000 [kg/m^3]\\Ro_{c+r}= combined density cube + raft [kg/m^3]](https://tex.z-dn.net/?f=Ro_%7BH2O%7D%3DR_%7Bc%2Br%7D%5C%5Cwhere%3A%5C%5CRo_%7BH2O%7D%3D%20water%20density%20%3D%201000%20%5Bkg%2Fm%5E3%5D%5C%5CRo_%7Bc%2Br%7D%3D%20combined%20density%20cube%20%2B%20raft%20%5Bkg%2Fm%5E3%5D)
Density is given by:
Ro = m/V
where:
m= mass [kg]
V = volume [m^3]
The buoyancy force can be calculated using the following equation:
![F_{B}=W=Ro_{H20}*g*Vs\\W = (200+730)*9.81\\W=9123.3[N]\\\\9123=1000*9.81*Vs\\Vs = 0.93 [m^3]](https://tex.z-dn.net/?f=F_%7BB%7D%3DW%3DRo_%7BH20%7D%2Ag%2AVs%5C%5CW%20%3D%20%28200%2B730%29%2A9.81%5C%5CW%3D9123.3%5BN%5D%5C%5C%5C%5C9123%3D1000%2A9.81%2AVs%5C%5CVs%20%3D%200.93%20%5Bm%5E3%5D)
Vs > Vc, What it means is that the combined volume of the raft and the cube is greater than that of the cube at the bottom of the pool. Therefore the water level rises more when the cube is located above the raft before submerging.
<span>Variations in Earth-Sun orbital relationships.</span>