In the given reaction potassium metal is placed in water and when a reactive metal is placed in water, it reacts with water to form metal hydroxide and hydrogen gas, as a result, potassium hydroxide and hydrogen gas are produced in the reaction. A redox reaction is a reaction in which a substance is oxidized during the reaction whereas some other substance is reduced during the reaction, simultaneously.
The given chemical reaction is:
2K(s) + 2H20(l) arrow 2KOH(aq) + H2(g)
Hope it Helps! Please mark as Brainliest!
Explanation:
A photon is a quantum of EM radiation. Its energy is given by E = hf and is related to the frequency f and wavelength λ of the radiation by
E=hf=hcλ(energy of a photon)E=hf=hcλ(energy of a photon),
where E is the energy of a single photon and c is the speed of light. When working with small systems, energy in eV is often useful. Note that Planck’s constant in these units is h = 4.14 × 10−15 eV · s.
Since many wavelengths are stated in nanometers (nm), it is also useful to know that hc = 1240 eV · nm.
These will make many calculations a little easier.
All EM radiation is composed of photons. Figure 1 shows various divisions of the EM spectrum plotted against wavelength, frequency, and photon energy. Previously in this book, photon characteristics were alluded to in the discussion of some of the characteristics of UV, x rays, and γ rays, the first of which start with frequencies just above violet in the visible spectrum. It was noted that these types of EM radiation have characteristics much different than visible light. We can now see that such properties arise because photon energy is larger at high frequencies.
Answer:
B) 12.9 grams.
Explanation:
How many moles of molecules in that 6.30 L of H₂?
The volume of one mole of an ideal gas at STP (0 °C, 1 atm) is 22.4 liters.
(The volume of that one mole of gas at STP will be 22.7 liters if STP is defined as 0 °C and 10⁵ Pa).
.
How many moles of Na will be needed?
The coefficient in front of Na in the equation is twice the coefficient in front of H₂. It takes two moles of Na to produce one mole of H₂.
.
What's the mass of that many Na atoms?
Refer to a modern periodic table. The molar mass of ₁₁Na is 22.990. The mass of one mole of Na atoms is 22.990 gram. The mass of 0.5625 moles of Na atoms will be
.
(2 sig. fig. as in the volume of the H₂ gas.)
Answer:
Explanation:
a) The forward reaction is exothermic, hence when temperature is increased the equilibrium shift towards the reactants side to get rid of the excess energy. This will mean that more reactants are produced decreasing yield
b) There are a fewer number of moles of gas on the right side compared to the left side (Just count the coefficients before each compound) so a higher pressure will mean that the equilibrium will shift towards the products side in order to decrease the pressure. This will mean that more products are formed increasing yield
c) When something is powdered it's surface area to volume ratio increases. A higher surface area means that the particles around it have more area to work on so the frequency of collisions will increase increasing the rate of reaction. This is why iron is powdered.