By definition, we have

So, we have to solve two different equations, depending of the possible range for the variable. We have to remember about these ranges when we decide to accept or discard the solutions:
Suppose that 
In this case, the absolute value doesn't do anything: the equation is

We are supposing
, so we can accept this solution.
Now, suppose that
. Now the sign of the expression is flipped by the absolute value, and the equation becomes

Again, the solution is coherent with the assumption, so we can accept this value as well.
Answer:
1/45
Step-by-step explanation:
Unlike the previous problem, this one requires application of the Law of Cosines. You want to find angle Q when you know the lengths of all 3 sides of the triangle.
Law of Cosines: a^2 = b^2 + c^2 - 2bc cos A
Applying that here:
40^2 = 32^2 + 64^2 - 2(32)(64)cos Q
Do the math. Solve for cos Q, and then find Q in degrees and Q in radians.
Answer:
y=-2x+4
Step-by-step explanation:
Hello there!
Using y=mx+b, -2 is the slope and 4 is the y-intercept.
;)