Answer:
D) The ball exerts a force on the wall and the wall exerts a force back.
Explanation:
Newton's third law of motion states that:
"When an object A exerts a force on another object B, then object B exerts an equal and opposite force on object A"
In this problem, we can identify (for instance) object A with tha ball and object B with the wall. Therefore, if we apply Newton's third law, we get:
The ball (object A) exerts a force on the wall (object B), therefore the wall (object B) exerts an equal and opposite force on the ball (object A). So, option D is the correct one.
We can use the equation for kinetic energy, K=1/2mv².
Your given variables are already in the correct units, so we can just plug in the variables and solve for v.
K = 1/2mv²
16 = 1/2(2)v²
16 = (1)v²
√16 = v
v = 4 m/s
Therefore, the velocity of a 2 kg mass with 16 J of kinetic energy is 4 m/s.
Hope this is helpful!
a una velocidad de
22 m/s, quien lo golpea y devuelve en la misma
dirección con una velocidad de 14 m/s. Si el
tiempo de contacto del balón con la jugadora es
de 0,03 s, ¿con qué fuerza golpeó la jugadora el
balón?
21 Una bala de 0,8 g, está en la recámara de un rifl e
cuando se g
Answer:
1) No, the car does not travel at constant speed.
2) V = 9 ft/s
3) No, the car does not travel at constant speed.
4) V = 5.9 ft/s
Explanation:
In order to know if the car is traveling at constant speed we need to derive the given formula. That way we get speed as a function of time:
V(t) = 2*t + 2 Since the speed depends on time, the speed is not constant at any time.
For the average speed we evaluate the formula for t=2 and t=5:
d(2) = 8 ft and d(5) = 35 ft

Again, for the average speed we evaluate the formula for t=1.8 and t=2.1:
d(1.8) = 6.84 ft and d(2.1) = 8.61 ft

Answer:

Explanation:
sin^2 60° = ( \|3 / 2 ) ^2 = 3 / 4.