Example:
sample density of gasoline, 20 g of weigth into 5 <span>mL
Answer:
D = m / V
D = 20 g / 5 mL
D = 4 g/mL</span>
Fold mountains<span> are </span>mountains<span> that form mainly by the effects of </span>folding<span> on layers within the upper part of the Earth's crust. Before either plate tectonic theory developed, or the internal architecture of thrust belts became well understood, the term was used for most</span>mountain<span> belts, such as the Himalayas.</span>
Answer:
Approximately 0.36 grams, because copper (II) chloride acts as a limiting reactant.
Explanation:
- It is a stichiometry problem.
- We should write the balance equation of the mentioned chemical reaction:
<em>2Al + 3CuCl₂ → 3Cu + 2AlCl₃.</em>
- It is clear that 2.0 moles of Al foil reacts with 3.0 moles of CuCl₂ to produce 3.0 moles of Cu metal and 2.0 moles of AlCl₃.
- Also, we need to calculate the number of moles of the reported masses of Al foil (0.50 g) and CuCl₂ (0.75 g) using the relation:
<em>n = mass / molar mass</em>
- The no. of moles of Al foil = mass / atomic mass = (0.50 g) / (26.98 g/mol) = 0.0185 mol.
- The no. of moles of CuCl₂ = mass / molar mass = (0.75 g) / (134.45 g/mol) = 5.578 x 10⁻³ mol.
- <em>From the stichiometry Al foil reacts with CuCl₂ with a ratio of 2:3.</em>
∴ 3.85 x 10⁻³ mol of Al foil reacts completely with 5.578 x 10⁻³ mol of CuCl₂ with <em>(2:3)</em> ratio and CuCl₂ is the limiting reactant while Al foil is in excess.
- From the stichiometry 3.0 moles of CuCl₂ will produce the same no. of moles of copper metal (3.0 moles).
- So, this reaction will produce 5.578 x 10⁻³ mol of copper metal.
- Finally, we can calculate the mass of copper produced using:
mass of Cu = no. of moles x Atomic mass of Cu = (5.578 x 10⁻³ mol)(63.546 g/mol) = 0.354459 g ≅ 0.36 g.
- <u><em>So, the answer is:</em></u>
<em>Approximately 0.36 grams, because copper (II) chloride acts as a limiting reactant.</em>
The appropriate answer is a. it involves a change in the molecular structure of the substance. A change in phase or state is referred to as a physical change. For example...liquid water freezing is a physical change because the state changes but solid water is still H20. Separating water into its constituent atoms, hydrogen and oxygen is a chemical change because the molecular structure of water is now non existent.
Answer is: mass of butane is D)11.6 g.
m(butane) = 50,0 g.
V(CO₂) = 17,9 L.
n(CO₂) = V(CO₂) ÷ Vm.
n(CO₂) = 17,9 L ÷ 22,4 L/mol.
n(CO₂) = 0,8 mol.
From chemical reaction n(CO₂) : n(C₄H₁₀) = 8 : 2.
n(C₄H₁₀) = 0,8 mol ÷ 4.
n(C₄H₁₀) = 0,2 mol.
m(C₄H₁₀) = n(C₄H₁₀) · M(C₄H₁₀).
m(C₄H₁₀) = 0,2 mol · 58 g/mol.
m(C₄H₁₀) = 11,6 g.