Answer:
4.33 L
Explanation:
Assuming ideal behaviour and that all 0.300 moles of gas reacted, we can solve this problem using Avogadro's law, which states that at constant temperature and pressure:
Where in this case:
We <u>input the given data</u>:
- 2.16 L * 0.601 mol = V₂ * 0.300 mol
And <u>solve for V₂</u>:
Answer:
The mass of NaCl is 0.029 grams
Explanation:
Step 1: Data given
Molecular weight of NaCl = 58.44 g/mol
Volume of solution = 100 mL = 0.100 L
Molarity = 0.0050 M
Step 2: Calculate moles NaCl
Moles NaCl = molarity * volume
Moles NaCl = 0.0050 M * 0.100 L
Moles NaCl = 0.00050 moles
Step 3: Calculate mass NaCl
Mass NaCl = moles NaCl * molar mass NaCl
Mass NaCl = 0.00050 moles * 58.44 g/mol
Mass NaCl = 0.029 grams
The mass of NaCl is 0.029 grams
The answer for this question would be B) False or the second option.
Answer is FALSE: ✅
<span>The particles are far apart from each other.</span>