Answer:
a) 3673469.39 seconds
b) 6.61×10¹⁴ m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity = 0.12×3×10⁸ m/s
s = Displacement
a = Acceleration due to gravity = 9.8 m/s²
Equation of motion

Time taken to reach 12% of light speed is 3673469.39 seconds

The distance it would have to travel is 6.61×10¹⁴ m
The energy carried by a single photon of frequency f is given by:

where

is the Planck constant. In our problem, the frequency of the photon is

, and by using these numbers we can find the energy of the photon:
32.5 kg of air
Explanation:
To calculate the mass of the air, we use the density formula:
density = mass / volume
mass = density × volume
density of air = 1.3 kg/m³
volume = 5 × 3 × 2 = 25 m³
mass of the air = 1.3 kg/m³ × 25 m³
mass of the air = 32.5 kg
Learn more about:
density
brainly.com/question/952755
brainly.com/question/12982373
#learnwithBrainly
Answer:
Answer 3: When a balloon goes up higher in the air, its size will increase. Since there's less air in the upper atmosphere, there's less stuff pushing back on the balloon, and hence the pressure is lower, which allows the balloon to expand
Answer: C
Explanation:
As the balloon rises, the gas inside the balloon expands because the atmospheric pressure surrounding the balloon drops. The atmosphere is 100 to 200 times less dense at the float altitudes than on the ground. and as the air is heated inside the balloon it causes it to rise upwards (because it is lighter than the cooler air on the outside). When the pilot needs to bring the balloon down again, he simply reduces the temperature of the air inside the balloon causing it to slowly descend.
Given:
450 grams of water (Tw = 24 C)
Thermal capacity of the beaker = negligible
Q = 0
Tice = 0 C
Tfinal = 8 C
450g * (Tf - Tw) + m_ice * (Tice - Tw) = 0
450g * (8 - 24) + m_ice (0 - 24) = 0
solve for m_ice