Answer:
This was my best estimation of the answers
Answer:
Your answer would be letter <em><u>B</u></em><em><u>.</u></em><em><u> </u></em><em><u>Electrons</u></em><em><u> </u></em><em><u>orbit</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>nucleus</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>energy</u></em><em><u> </u></em><em><u>level</u></em><em><u>.</u></em>
Explanation:
Hope it helps..
Just correct me if I'm wrong, okay?
But ur welcome!!
(;ŏ﹏ŏ)(◕ᴗ◕✿)
Let say the point is inside the cylinder
then as per Gauss' law we have

here q = charge inside the gaussian surface.
Now if our point is inside the cylinder then we can say that gaussian surface has charge less than total charge.
we will calculate the charge first which is given as


now using the equation of Gauss law we will have


now we will have

Now if we have a situation that the point lies outside the cylinder
we will calculate the charge first which is given as it is now the total charge of the cylinder


now using the equation of Gauss law we will have


now we will have
Answer:
The distance covered by the balloon is 47.52 meters.
Explanation:
Given that,
Initial speed of the balloon, u = 1.14 m/
Let us assumed we need to find the distance covered by the balloon after t = 3 second. Let d is the distance covered by the balloon. It can be given by :

Here, a = g


d = 47.52 meters
So, the distance covered by the balloon is 47.52 meters. Hence, this is the required solution.
Answer:
C. An object accelerates in the same direction as that of the force applied.
Explanation:
An object accelerates in the same direction as that of the force applied.