Answer:
Δy= 5,075 10⁻⁶ m
Explanation:
The expression that describes the interference phenomenon is
d sin θ = (m + ½) λ
As the observation is on a distant screen
tan θ = y / x
tan θ= sin θ/cos θ
As in ethanes I will experience the separation of the vines is small and the distance to the big screen
tan θ = sin θ
Let's replace
d y / x = (m + ½) λ
The width of a bright stripe at the difference in distance
y₁ = (m + ½) λ x / d
m = 1
y₁ = 3/2 λ x / d
Let's use m = 1, we look for the following interference,
m = 2
y₂ = (2+ ½) λ x / d
The distance to the screen is constant x₁ = x₂ = x₀
The width of the bright stripe is
Δy = λ x / d (5/2 -3/2)
Δy = 630 10⁻⁹ 2.90 /0.360 10⁻³ (1)
Δy= 5,075 10⁻⁶ m
Answer: pick A moves 10.2 metre
Explanation: since they were given a quick push simultaneously the product of their distance moved and velocity would be equal.
Let the distance moved by puck B x then that of puck A would be 18-x.
So therefore we have that,
1.3*(18-x) = 1.7*x
23.4 - 1.3x = 1.7x
23.4=3x
Making x subject of formula we have
x = 23.4/3 = 7.8m
But the distance moved by puck A is 18-x. So therefore,
18-7.8=10.2meter
Answer:
A
Explanation:
Let's rule out some of the options. C makes no sense because static charges will create electric fields only, so the charge has to move. D makes no sense because monopoles do not exist. We can rule out B because when a charge is moving at a constant velocity. You can use Maxwell's equations and general relativity to figure out that at a constant velocity, you can't produce an electromagnetic wave because there is no magnetic field. Therefore the answer is A. When you have an oscillating or accelerating electric charge, you will produce an EM wave.
Answer:
34000 J or 34 kJ
Explanation:
From the question, The energy needed to just melt the ice cube does not requires any external temperature or change in temperature, Hence it is called latent heat
By Applying,
Q' = C'm........................ Equation 1
Where Q' = Latent heat, C' = Specific latent heat of fusion of water, m = mass of ice.
Given: C' = 340000 J/kg, m = 100 g = 0.1 kg
Substitute into equation 1
Q' = 0.1(340000)
Q' = 34000 J
Q' = 34 kJ
Answer:
work = 0
Explanation:
Let's remember that work is defined as the product of a force by a distance. Distance is the physical path displaced by the body under the action of that force.
W = F * d
where:
W = work [J]
F = force [N]
d = distance [m]
In this case, the toy is held at a height, there is no displacement from one point to another. So there is no work and this is equal to zero.
W = (2*9.81) * 0 = 0 [Joules]