Answer:
Part a)
When spring compressed by 2 cm
H = 1.47 m
Part b)
When spring is compressed by 4 cm
H = 5.94 m
Explanation:
Part a)
As we know that the spring is compressed and released
so here spring potential energy is converted into gravitational potential energy at its maximum height
So we will have


so we have

Part b)
Similarly when spring is compressed by 4 cm
then we have


so we have

Answer:
The coefficient of static friction between the puppy and the floor is 0.7273.
Explanation:
The horizontal force applied to move the puppy from a steady state has to be greater than the force of static friction, after it is moving the force needs to be equal to be greater than the force of dynamic friction in order to maintain its movement. The force of static friction is given by:

Where
is the static friction force,
is the coefficient of static friction and
is the normal force. Since there's no angle on the flor the normal force is equal to the weight of the puppy, therefore,
, to make the puppy moving we need to use a force of 80 N, therefore,
, so we can solve for the coefficient as shown below:

The coefficient of static friction between the puppy and the floor is 0.7273.
It's C, with the 2/7/4/6 in front of each reactant and product.
Answer:
Velocity
Explanation:
The slope of a position-time graph gives velocity of a moving object.