Answer:
When flying the LNAV Approach, the missed approach point (MAP) would be indicated by reaching:
C. the RW30 waypoint.
Explanation:
- In Aviation, LNAV stands for Lateral Navigation. The option a is incorrect as an altitude of 3100 feet refers to the decision altitude not the missed approach point.
- The option b is incorrect as a distance of 1.5 NM to RW30 referring to the Visual descent point (VDP) is 1.5 nautical miles for the Runway (RW) 30 from threshold.
- The option c is correct as Missed approach point is designed to coincide with the runway threshold. The RW 30 way point is referring to the way point to the threshold for the Runway 30.
An experimental design is used to assign variables for testing. In contrast to a control design where nothing is changed, the experimental design allows you to test various new inputs to see how they would vary from the original results.
Answer:
The engine would be warm to touch, and the exhaust gases would be at ambient temperature. The engine would not vibrate nor make any noise. None of the fuel entering the engine would go unused.
Explanation:
In this ideal engine, none of these events would happen due to the nature of the efficiency.
We can define efficiency as the ratio between the used energy and the potential generable energy in the fuel.
n=W, total/(E, available).
However, in real engines the energy generated in the combustion of the fuel transforms into heat (which heates the exhost gases, and the engine therefore transfering some of this heat to the environment). Also, there are some mechanical energy loss due to vibrations and sound, which are also energy that comes from the fuel combustion.
<span>K.E = 0.5 * m * v^2 ( m = mass(Kg), V = Velocity(m/s)
= 0.5 * 8 * 5^2
= 4 * 25
= 100 J </span>
Answer:
pumpkin
Explanation:
watermelon and pumpkins are close to shape and size