Answer:
The spring constant is 3750 N/m
Explanation:
Use the following two relationships:
(Work) = (Force) x (Displacement)
(Force) = (Spring constant) x (Displacement)
=>
(Spring constant) = (Force) / (Displacement) = (Work) / (Displacement)^2
(Spring constant) = 6.0 kg.(m^2/s^2) / 0.0016 m^2 = 3750 N/m
The spring constant is 3750 N/m
Answer:
The possible frequencies for the A string of the other violinist is 457 Hz and 467 Hz.
(3) and (4) is correct option.
Explanation:
Given that,
Beat frequency f = 5.0 Hz
Frequency f'= 462 Hz
We need to calculate the possible frequencies for the A string of the other violinist
Using formula of frequency
...(I)
...(II)
Where, f= beat frequency
f₁ = frequency
Put the value in both equations


Hence, The possible frequencies for the A string of the other violinist is 467 Hz and 457 Hz.
Third model shows how a comet's tail changes during its orbit...
mark brainliest
Let us assume the upstream rowing rate of Alicia = x
Let us assume the downstream rowing rate of Alicia = y
We already know that
Travelling time = Distance traveled/rowing rate
Then
6/(x + 3) = 4/x
6x = 4x + 12
6x - 4x = 12
2x = 12
x = 6
Then
Rowing rate of Alicia going upstream = 6 miles per hour
Rowing rate of Alicia going downstream = 9 miles per hour.