As we can see here the lever has two forces at two ends
1. 300 N
2. 200 N
now we need to find the Torque on the lever about the fulcrum
so we will have
1. clockwise torque due to force at right end is


2. counterclockwise torque due to force at left end


so as per above calculations we can see that net torque on the lever is clockwise as it has more torque in clockwise direction
so <u>it will rotate clockwise</u>
Answer:
f = 614.28 Hz
Explanation:
Given that, the length of the air column in the test tube is 14.0 cm. It can be assumed that the speed of sound in air is 344 m/s. The test tube is a kind of tube which has a closed end. The frequency in of standing wave in a closed end tube is given by :


f = 614.28 Hz
So, the frequency of the this standing wave is 614.28 Hz. Hence, this is the required solution.
If <em>A</em> = <em>i</em> - <em>j</em> + <em>k</em>, then the magnitude of <em>A</em> is
||<em>A</em>|| = √(1² + (-1)² + 1²) = √3
Then the unit vector in the direction of <em>A</em> is 1/||A|| multiplied by <em>A</em> :
<em>u</em> = <em>A</em>/||<em>A</em>|| = (<em>i</em> - <em>j</em> + <em>k</em>)/√3
(choice D)
Answer:
H = 5 m
Explanation:
As the person leaves the slide horizontally so the time taken by the person to hit the water is given as

so we can find the vertical velocity by which person will hit the water using kinematics



now the speed of the person at the end of the slide is given as



now by energy conservation we can find the initial height




Luminosity is the total amount of power a star radiate I think :)