1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GenaCL600 [577]
2 years ago
10

Compare physical changes and chemical changes

Physics
1 answer:
JulijaS [17]2 years ago
4 0

Answer:

The difference between a physical reaction and a chemical reaction is composition. In a chemical reaction, there is a change in the composition of the substances in question; in a physical change there is a difference in the appearance, smell, or simple display of a sample of matter without a change in composition. Although we call them physical "reactions," no reaction is actually occurring. In order for a reaction to take place, there must be a change in the elemental composition of the substance in question. Thus, we shall simply refer to physical "reactions" as physical changes from now on.

Explanation:

Physical changes are limited to changes that result in a difference in display without changing the composition. Some common changes (but not limited to) are:

Texture

Color

Temperature

Shape

Change of State (Boiling Point and Melting Point are significant factors in determining this change.)

Physical properties include many other aspects of a substance. The following are (but not limited to) physical properties.

Luster

Malleability

Ability to be drawn into a thin wire

Density

Viscosity

Solubility

Mass

Volume

You might be interested in
Find the period of the leg of a man who is 1.83 m in height with a mass of 67 kg. The moment of inertia of a cylinder rotating a
In-s [12.5K]

Answer:

T = 1.108\,s

Explanation:

The period of a physical pendulum is:

T = \sqrt{\frac{I_{O}}{m\cdot g \cdot L} }

T=2\cdot \pi \sqrt{\frac{\frac{1}{3}\cdot m \cdot L^{2} }{m\cdot g\cdot L} }

T=2\cdot \pi \sqrt{\frac{L }{3\cdot g} }

The length of the leg is approximately the height of the person:

L = 0.915\,m

The period is:

T = 2\cdot \pi \sqrt{\frac{0.915\,m}{3\cdot (9.807\,\frac{m}{s^{2}} )} }

T = 1.108\,s

4 0
3 years ago
A 1-mCi source of^60 Co is placed in the center of a cylindrical water-filled tank with an inside diameter of 20 cm and depth of
LenKa [72]

To solve this problem we need the concepts of Energy fluency and Intensity from chemical elements.

The energy fluency is given by the equation

\Psi=4RcE\pi

Where

\Psi =The energy fluency

c = Activity of the source

r = distance

E = electric field

In the other hand we have the equation for current in materials, which is given by

I= I_0 e^{-\mu_{h20}X_{h2o}} e^{-\mu_{Fe}X_{Fe}}

Then replacing our values we have that

I = 1*10^{-3} * 3.3*10^{10} * e ^{-0.06*1.1} e^{-0.058*7.861}

I = 1.3*10^7 Bq

We can conclude in this part that 1.3*10^7Bq is the activity coming out of the cylinder.

Now the energy fluency would be,

\Psi = \frac{cE}{4\pir^2}

\Psi = \frac{1.3*10^7*2*1.25}{4\pi*11^2}

\Psi = 2.14*10^4 MeV/cm^2.s

The  uncollided flux density at the outer surface of the tank nearest the source is \Psi = 2.14*10^4 MeV/cm^2.s

6 0
2 years ago
1. If the strength of the magnetic field at B is 3 units, the strength of the magnetic field at A is _____.
Ymorist [56]
<h3><u>Answer;</u></h3>

C. 12 units

<h3><u>Explanation;</u></h3>
  • If the strength of the magnetic field at B is 3 units, the strength of the magnetic field at A is 12 units
  • Magnetic field strength is one of two ways that the intensity of a magnetic field can be expressed.
  • <em><u>The strength of the field is inversely proportional to the square of the distance from the source. This means that If the distance between two points in magnetic filed is doubled the magnetic force between them will fall to a quarter of the initial value. </u></em>
  • <em><u>On the other hand, if the distance between two magnets is halved the magnetic force between them will increase to four times the initial value.</u></em>
6 0
3 years ago
An archer puts a 0.30 kg arrow to the bowstring. An average force of 201 N is exerted to draw the string back 1.3 m.a. Assuming
Vlad [161]

Answer:

Explanation:

Given

mass of archer m=0.3\ kg

Average force F_{avg}=201\ N

extension in arrow x=1.3\ m

Work done to stretch the bow with arrow

W=F\cdot x

W=201\times 1.3=261.3\ m

This work done is converted into kinetic Energy of arrow

W=\frac{1}{2}mv^2

where v= velocity of arrow

261.3=\frac{1}{2}\times 0.3\times v^2

v=\sqrt{1742}

v=41.73\ m/s

(b)if arrow is thrown vertically upward then this energy is converted to Potential energy

W=mgh

261.3=0.3\times 9.8\times h

h=\frac{261.3}{0.3\times 9.8}

h=88.87\ m

   

4 0
3 years ago
What are two ways that machines can change the way that work is done?
algol [13]
Machines makes work easier by increasing the amount of force that is applied, and changing the direction in which the force is applied !! Hope it helped (p.s. I had this same question)
5 0
3 years ago
Read 2 more answers
Other questions:
  • A luggage handler pulls a 19.0-kg suitcase up a ramp inclined at 34.0 ∘ above the horizontal by a force F⃗ of magnitude 169 N th
    6·1 answer
  • The “Compton effect” showed
    8·2 answers
  • Which of the following describes a magnet that only has a field when a current is present? permanent magnet magnetic domain elec
    11·1 answer
  • I can raise a bucket of cement mix of mass 12kg through a vertical height of 8m in 10 seconds.Calculate the average power used i
    5·1 answer
  • If a system requires 150 j of input work and produces 123 J of output work, whats its effiency
    10·1 answer
  • What would be the Elastic Potential Energy (EPE) stored in a spring with a constant k = 200 N/m that is pulled to stretch 0.45m?
    8·1 answer
  • Explain approach in volleyball​
    9·1 answer
  • Give two alterations in a generator to produce more electromotive force​
    15·2 answers
  • Which famous scientist is associated with the force of gravity?
    8·1 answer
  • A 2.00 kg rock is dropped from the top of a 30.0 m high building. Calculate the ball’s momentum at the time that it strikes the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!