Answer:
The answer is "
"
Explanation:
We arrange oxoacids to decrease the intensity of acids in this question. Or we may conclude all this from strongest to weakest acids they order oxoacids, that's why above given order is correct.
Considering the ideal gas law, the volume of gas produced at 25.0 °C and 1.50 atm is 184.899 L.
<h3>Definition of ideal gas</h3>
An ideal gas is a theoretical gas that is considered to be composed of randomly moving point particles that do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
<h3>Ideal gas law</h3>
An ideal gas is characterized by absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of gases:
P×V = n×R×T
<h3>Volume of gas</h3>
In this case, you know:
- P= 1.50 atm
- V= ?
- n= 500 g×
= 11.36 moles, being 44
the molar mass of CO₂ - R= 0.082

- T= 25 C= 298 K (being 0 C=273 K)
Replacing in the ideal gas law:
1.50 atm×V = 11.36 moles×0.082
× 298 K
Solving:
V= (11.36 moles×0.082
× 298 K) ÷ 1.50 atm
<u><em>V= 184.899 L</em></u>
Finally, the volume of gas produced at 25.0 °C and 1.50 atm is 184.899 L.
Learn more about the ideal gas law:
<u>brainly.com/question/4147359?referrer=searchResults</u>
Answer:
e) The activation energy of the reverse reaction is greater than that of the forward reaction.
Explanation:
- Activation energy is the minimum amount of energy that is required by the reactants to start a reaction.
- An exothermic reaction is a reaction that releases heat energy to the surrounding while an endothermic reactions is a reaction that absorbs heat from the surrounding.
- <em><u>In reversible reactions, when the forward reaction is exothermic it means the reverse reaction will be endothermic, therefore the reverse reaction will have a higher activation energy than the forward reaction.</u></em> The activation energy of the reverse reaction will be the sum of the enthalpy and the activation energy of the forward reaction.
B is the answer
please mark me brainlist ^^